Yang–Mills extension of the Loop Quantum Gravity-corrected Maxwell equations

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Annals of Physics Pub Date : 2025-02-01 DOI:10.1016/j.aop.2024.169892
G.L.L.W. Levy, J.A. Helayël-Neto
{"title":"Yang–Mills extension of the Loop Quantum Gravity-corrected Maxwell equations","authors":"G.L.L.W. Levy,&nbsp;J.A. Helayël-Neto","doi":"10.1016/j.aop.2024.169892","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we endeavor to build up a non-Abelian formulation to describe the self-interactions of massless vector bosons in the context of Loop Quantum Gravity (LQG). To accomplish this task, we start off from the modified Maxwell equations with the inclusion of LQG corrections and its corresponding local <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> gauge invariance. LQG effects in the electromagnetic interactions have significant importance, as they might be adopted to describe the flight time of cosmic photons coming from very high-energy explosions in the Universe, such as events of Gamma-Ray Bursts (GRBs). These photons have energy-dependent speeds, indicating that the velocity of light in the vacuum is not constant. To carry out the extension from the Abelian to the non-Abelian scenario, we shall follow the so-called Noether current procedure, which consists in recurrently introducing self-interactions into an initially free action for vector bosons by coupling the latter to the conserved currents of a global symmetry present in the action of departure. In the end of the non-Abelianization process, the initial global symmetry naturally becomes local. Once the Yang–Mills system includes LQG correction terms, it becomes possible to analyze how quantum-gravity induced contributions show up in both the electroweak and the QCD sectors of the Standard Model, providing a set-up for phenomenological investigations that may bring about new elements to discuss Physics beyond the Standard-Model.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"473 ","pages":"Article 169892"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002999","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we endeavor to build up a non-Abelian formulation to describe the self-interactions of massless vector bosons in the context of Loop Quantum Gravity (LQG). To accomplish this task, we start off from the modified Maxwell equations with the inclusion of LQG corrections and its corresponding local U(1) gauge invariance. LQG effects in the electromagnetic interactions have significant importance, as they might be adopted to describe the flight time of cosmic photons coming from very high-energy explosions in the Universe, such as events of Gamma-Ray Bursts (GRBs). These photons have energy-dependent speeds, indicating that the velocity of light in the vacuum is not constant. To carry out the extension from the Abelian to the non-Abelian scenario, we shall follow the so-called Noether current procedure, which consists in recurrently introducing self-interactions into an initially free action for vector bosons by coupling the latter to the conserved currents of a global symmetry present in the action of departure. In the end of the non-Abelianization process, the initial global symmetry naturally becomes local. Once the Yang–Mills system includes LQG correction terms, it becomes possible to analyze how quantum-gravity induced contributions show up in both the electroweak and the QCD sectors of the Standard Model, providing a set-up for phenomenological investigations that may bring about new elements to discuss Physics beyond the Standard-Model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
期刊最新文献
Can Brans–Dicke scalar field mimic early dark energy? Laws of thermodynamic equilibrium within first order relativistic hydrodynamics Editorial Board Corrigendum to “Field theory of many-body Lindbladian dynamics” [Annals of Physics Volume 455, August 2023, 169385] Wormholes stability from a class of (2 + 1)-dimensional regular black holes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1