Microstructural analysis and preliminary wear assessment of wire arc additive manufactured AA 5083 aluminum alloy for lightweight structures

Prasanna Nagasai Bellamkonda , Maheshwar Dwivedy , Kaushik N.Ch
{"title":"Microstructural analysis and preliminary wear assessment of wire arc additive manufactured AA 5083 aluminum alloy for lightweight structures","authors":"Prasanna Nagasai Bellamkonda ,&nbsp;Maheshwar Dwivedy ,&nbsp;Kaushik N.Ch","doi":"10.1016/j.ijlmm.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of Wire Arc Additive Manufacturing (WAAM) has significantly enhanced the production capabilities for lightweight and structurally robust components. This study investigates the microstructural characteristics, tensile properties, and preliminary wear performance of AA 5083 aluminum alloy processed via WAAM, focusing on applications for lightweight structures. Using SEM and XRD, microstructural changes during the WAAM process are analyzed, and tensile testing evaluates the mechanical properties, including ultimate tensile strength (UTS) and elongation. The results reveal that the microstructure consists of α-Al and β-(Al<sub>5</sub>Mg<sub>8</sub>) phases, with the Al<sub>5</sub>Mg<sub>8</sub> phase distributed along grain boundaries and within grains. Notably, the grain size in the Y-direction (building direction) is larger than in the X-direction (deposition direction) due to temperature variations during processing. Tensile testing shows that horizontal samples (X-direction) have a UTS of 295 ± 5 MPa and elongation of 20.08 ± 0.8 %, while vertical samples (Y-direction) have a UTS of 267 ± 10 MPa and elongation of 16.43 ± 2.1 %. This results in an anisotropy of 9.4 % in tensile strength, reflecting the differences in mechanical properties between the two directions. The WAAM AA 5083 aluminum part exhibits a maximum wear rate of 5.22 × 10⁻³ mm³/m and a coefficient of friction of 0.52 at a load of 3.5 kg and 450 rpm. Under these conditions, deep grooves, layer separation, and load-induced deformation are observed. The primary wear mechanisms include delamination, adhesion, and abrasion. Hardness levels are consistent in the X-direction and show minimal variance in the Y-direction, with an average hardness of 89.4 ± 5.14 HV0.5. The study demonstrates that WAAM-produced AA 5083 aluminum alloy, with an anisotropy below 10 %, is suitable for real-time lightweight structures, offering effective performance in engineering applications such as aerospace and automotive industries. Future research should focus on further quantifying wear behavior and optimizing processing conditions to enhance material performance for specific applications.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 1","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of Wire Arc Additive Manufacturing (WAAM) has significantly enhanced the production capabilities for lightweight and structurally robust components. This study investigates the microstructural characteristics, tensile properties, and preliminary wear performance of AA 5083 aluminum alloy processed via WAAM, focusing on applications for lightweight structures. Using SEM and XRD, microstructural changes during the WAAM process are analyzed, and tensile testing evaluates the mechanical properties, including ultimate tensile strength (UTS) and elongation. The results reveal that the microstructure consists of α-Al and β-(Al5Mg8) phases, with the Al5Mg8 phase distributed along grain boundaries and within grains. Notably, the grain size in the Y-direction (building direction) is larger than in the X-direction (deposition direction) due to temperature variations during processing. Tensile testing shows that horizontal samples (X-direction) have a UTS of 295 ± 5 MPa and elongation of 20.08 ± 0.8 %, while vertical samples (Y-direction) have a UTS of 267 ± 10 MPa and elongation of 16.43 ± 2.1 %. This results in an anisotropy of 9.4 % in tensile strength, reflecting the differences in mechanical properties between the two directions. The WAAM AA 5083 aluminum part exhibits a maximum wear rate of 5.22 × 10⁻³ mm³/m and a coefficient of friction of 0.52 at a load of 3.5 kg and 450 rpm. Under these conditions, deep grooves, layer separation, and load-induced deformation are observed. The primary wear mechanisms include delamination, adhesion, and abrasion. Hardness levels are consistent in the X-direction and show minimal variance in the Y-direction, with an average hardness of 89.4 ± 5.14 HV0.5. The study demonstrates that WAAM-produced AA 5083 aluminum alloy, with an anisotropy below 10 %, is suitable for real-time lightweight structures, offering effective performance in engineering applications such as aerospace and automotive industries. Future research should focus on further quantifying wear behavior and optimizing processing conditions to enhance material performance for specific applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Editorial Board Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams Microstructural modification, mechanical properties, and wear behaviour of aged Al–Si–Mg/Si3N4 composites for aerospace applications Microstructural analysis and preliminary wear assessment of wire arc additive manufactured AA 5083 aluminum alloy for lightweight structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1