Design and thermodynamic evaluation of onboard NH3 BOG re-liquefaction systems for ocean-going NH3 Carriers

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2025-02-01 DOI:10.1016/j.ijrefrig.2024.12.005
Sangmin Ji , Sejun Park , Youngkyun Seo , Minsoo Choi , Jinkwang Lee
{"title":"Design and thermodynamic evaluation of onboard NH3 BOG re-liquefaction systems for ocean-going NH3 Carriers","authors":"Sangmin Ji ,&nbsp;Sejun Park ,&nbsp;Youngkyun Seo ,&nbsp;Minsoo Choi ,&nbsp;Jinkwang Lee","doi":"10.1016/j.ijrefrig.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>This study stems from the burgeoning interest in ammonia (NH<sub>3</sub>) as a green energy source, particularly for maritime applications where conventional refrigeration cycles pose both environmental and economic challenges, specifically focusing on an 88,000 m<sup>3</sup> class Very Large Ammonia Carrier (VLAC). Two distinct refrigeration cycle concepts were evaluated for the re-liquefaction system. The optimization technique used in the study was a hybrid method that combined the SQP and BOX algorithms to optimize the system. Key process variables were set to the final compression and expansion pressures of the refrigeration cycle, which were optimized to minimize the specific energy consumption (SEC) of the systems. An economic analysis was conducted to assess the costs associated with the equipment used in both systems. The first optimized re-liquefaction system employs a vapor-compression refrigeration cycle using NH<sub>3</sub> as the refrigerant. The thermodynamic analysis indicated energy consumption, SEC, and exergy efficiency of 112.44 kW, 0.1898 kWh/kg, and 38.31 %, respectively. The second system utilizing the Linde–Hampson refrigeration cycle demonstrated energy consumption, SEC, and exergy efficiency of 102.35 kW, 0.1728 kWh/kg, and 43.03 %, respectively. Exergy destruction within these systems was predominantly observed in the heat exchangers, accounting for 43.00 % and 51.80 % of the total exergy destruction, respectively. Economic analysis revealed that the life cycle cost (LCC) and sensitivity analysis of the re-liquefaction system using the Linde-Hampson refrigeration cycle are approximately 2.0 million USD lower than the system using the vapor compression refrigeration cycle. In conclusion, the Linde-Hampson re-liquefaction system is energy efficient and economical.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"170 ","pages":"Pages 399-411"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724004390","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study stems from the burgeoning interest in ammonia (NH3) as a green energy source, particularly for maritime applications where conventional refrigeration cycles pose both environmental and economic challenges, specifically focusing on an 88,000 m3 class Very Large Ammonia Carrier (VLAC). Two distinct refrigeration cycle concepts were evaluated for the re-liquefaction system. The optimization technique used in the study was a hybrid method that combined the SQP and BOX algorithms to optimize the system. Key process variables were set to the final compression and expansion pressures of the refrigeration cycle, which were optimized to minimize the specific energy consumption (SEC) of the systems. An economic analysis was conducted to assess the costs associated with the equipment used in both systems. The first optimized re-liquefaction system employs a vapor-compression refrigeration cycle using NH3 as the refrigerant. The thermodynamic analysis indicated energy consumption, SEC, and exergy efficiency of 112.44 kW, 0.1898 kWh/kg, and 38.31 %, respectively. The second system utilizing the Linde–Hampson refrigeration cycle demonstrated energy consumption, SEC, and exergy efficiency of 102.35 kW, 0.1728 kWh/kg, and 43.03 %, respectively. Exergy destruction within these systems was predominantly observed in the heat exchangers, accounting for 43.00 % and 51.80 % of the total exergy destruction, respectively. Economic analysis revealed that the life cycle cost (LCC) and sensitivity analysis of the re-liquefaction system using the Linde-Hampson refrigeration cycle are approximately 2.0 million USD lower than the system using the vapor compression refrigeration cycle. In conclusion, the Linde-Hampson re-liquefaction system is energy efficient and economical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
期刊最新文献
FEMCE – A 3D finite element simulation tool for magnetic refrigerants Dynamic synergy optimization (DSO): An integrated approach of metaheuristic algorithms and PID control for real-time stability enhancement in refrigeration systems Thermodynamic and environment analysis of a modified transcritical CO2 refrigeration cycle integrated with ejector and subcooler Research of CO2 high temperature heat pump for industrial steam generation with data center heat source A sustainable cooling solution for machining: Internally cooled toolholder enhanced by nanorefrigerants and electrohydrodynamic effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1