{"title":"Phenoxazine-based covalent triazine framework for photocatalytic aerobic hydroxylation of arylboronic acids to phenols†","authors":"Yaju Chen , Haowen Chen , Jun Jiang , Hongbing Ji","doi":"10.1039/d4gc04293j","DOIUrl":null,"url":null,"abstract":"<div><div>The development of photoactive triazine-containing donor–acceptor (D–A) polymers to achieve enhanced photocatalytic activity for organic transformations has generated intense interest. Herein, a phenoxazine-based covalent triazine framework (NP-CTF) was prepared <em>via</em> facile one-step trimerization of phenoxazine bearing nitrile groups in the presence of trifluoromethanesulfonic (TfOH). The resulting D–A polymer NP-CTF displayed good thermal and chemical stability, wide light absorption ability and a slightly negative conduction band. The NP-CTF could efficiently activate O<sub>2</sub> into reactive oxygen species (singlet oxygen (<sup>1</sup>O<sub>2</sub>) and superoxide radical anion (O<sub>2</sub>˙<sup>−</sup>)). As expected, this metal-free NP-CTF was successfully employed as a heterogeneous catalyst for photocatalytic aerobic hydroxylation of arylboronic acids to phenols in an air atmosphere under irradiation of white light-emitting diodes and even under natural sunlight. Notably, the NP-CTF exhibited remarkable photocatalytic activity with a phenol yield of 98.2%, which at least exceeded 30% than that of commercially available catalysts (TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>) under the same reaction conditions. Moreover, the NP-CTF could be easily recycled using a simple separation procedure and reused at least ten times without obvious loss of photocatalytic activity, suggesting excellent stability and reusability. The current work potentially provides a universal approach to prepare D–A dyad CTF-based photocatalysts and suggests a promising and sustainable photocatalytic protocol to obtain phenols from arylboronic acids.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 5","pages":"Pages 1430-1439"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224010070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of photoactive triazine-containing donor–acceptor (D–A) polymers to achieve enhanced photocatalytic activity for organic transformations has generated intense interest. Herein, a phenoxazine-based covalent triazine framework (NP-CTF) was prepared via facile one-step trimerization of phenoxazine bearing nitrile groups in the presence of trifluoromethanesulfonic (TfOH). The resulting D–A polymer NP-CTF displayed good thermal and chemical stability, wide light absorption ability and a slightly negative conduction band. The NP-CTF could efficiently activate O2 into reactive oxygen species (singlet oxygen (1O2) and superoxide radical anion (O2˙−)). As expected, this metal-free NP-CTF was successfully employed as a heterogeneous catalyst for photocatalytic aerobic hydroxylation of arylboronic acids to phenols in an air atmosphere under irradiation of white light-emitting diodes and even under natural sunlight. Notably, the NP-CTF exhibited remarkable photocatalytic activity with a phenol yield of 98.2%, which at least exceeded 30% than that of commercially available catalysts (TiO2 and g-C3N4) under the same reaction conditions. Moreover, the NP-CTF could be easily recycled using a simple separation procedure and reused at least ten times without obvious loss of photocatalytic activity, suggesting excellent stability and reusability. The current work potentially provides a universal approach to prepare D–A dyad CTF-based photocatalysts and suggests a promising and sustainable photocatalytic protocol to obtain phenols from arylboronic acids.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.