Fanmengjing Wang , Yizhihao Lu , Kaiqiang He , Philip J. Marriott , Matthew R. Hill , Huanting Wang
{"title":"Preparation of COF-based membranes via chiral induction for efficient enantioselective resolution","authors":"Fanmengjing Wang , Yizhihao Lu , Kaiqiang He , Philip J. Marriott , Matthew R. Hill , Huanting Wang","doi":"10.1016/j.advmem.2024.100113","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient chiral resolution is highly important in the food, pharmaceutical and agriculture industries because of the distinctive biological or pharmaceutical properties of enantiomers. Membrane-assisted chiral separation, which has the potential advantages of low cost and high yield, has attracted significant research attention, but the fabrication of high-quality chiral membranes displaying both high selectivity and high flux of enantiomers is still a challenge. Covalent organic frameworks (COFs), a class of porous materials with high porosity and diverse functionalities, are promising for the development of high-performance chiral separation membranes; however, these materials have yet to be developed. In this work, we demonstrated the in situ growth of a chiral TpPa-1 (cTpPa-1) membrane on polymer substrates via chiral induction. The resulting cTpPa-1@PAN membrane displayed a maximum enantioselectivity of 99.3 % <em>ee</em> for resolving limonene racemates with a flux of 5.5 mmol m<sup>−2</sup> h<sup>−1</sup>. Furthermore, the effects of feed solvent polarity on membrane performance, the versatility of cTpPa-1 for making chiral composite membranes, and the mechanisms associated with cTpPa-1-based membranes were studied and are discussed.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100113"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823424000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient chiral resolution is highly important in the food, pharmaceutical and agriculture industries because of the distinctive biological or pharmaceutical properties of enantiomers. Membrane-assisted chiral separation, which has the potential advantages of low cost and high yield, has attracted significant research attention, but the fabrication of high-quality chiral membranes displaying both high selectivity and high flux of enantiomers is still a challenge. Covalent organic frameworks (COFs), a class of porous materials with high porosity and diverse functionalities, are promising for the development of high-performance chiral separation membranes; however, these materials have yet to be developed. In this work, we demonstrated the in situ growth of a chiral TpPa-1 (cTpPa-1) membrane on polymer substrates via chiral induction. The resulting cTpPa-1@PAN membrane displayed a maximum enantioselectivity of 99.3 % ee for resolving limonene racemates with a flux of 5.5 mmol m−2 h−1. Furthermore, the effects of feed solvent polarity on membrane performance, the versatility of cTpPa-1 for making chiral composite membranes, and the mechanisms associated with cTpPa-1-based membranes were studied and are discussed.