{"title":"Development of axisymmetric shell model for creep deformation analysis of reactor pressure vessel lower head","authors":"Jang Min Park , Kukhee Lim","doi":"10.1016/j.net.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>Under severe accident conditions of nuclear power plants, the lower head of a reactor pressure vessel can be at risk of creep deformation and potential failure. This study presents a computational model that can represent the creep deformation of the lower head through the application of shell theory. To account for the large deformation due to creep, kinematic equations are derived and implemented. Particularly, this study provides details of the mathematical formulation, which were lacking in previous studies. The analysis results using the developed model are compared with those of finite element analysis, considering deformation history, stress distribution, and deformed shape. A dimensionless time for the creep deformation is proposed based on the results, which can characterize the effective strain at failure. Finally, the developed model is applied to OECD lower head failure test for validation.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 2","pages":"Article 103220"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324004698","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Under severe accident conditions of nuclear power plants, the lower head of a reactor pressure vessel can be at risk of creep deformation and potential failure. This study presents a computational model that can represent the creep deformation of the lower head through the application of shell theory. To account for the large deformation due to creep, kinematic equations are derived and implemented. Particularly, this study provides details of the mathematical formulation, which were lacking in previous studies. The analysis results using the developed model are compared with those of finite element analysis, considering deformation history, stress distribution, and deformed shape. A dimensionless time for the creep deformation is proposed based on the results, which can characterize the effective strain at failure. Finally, the developed model is applied to OECD lower head failure test for validation.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development