Maria Luisa Feo , Massimiliano Frattoni , Ester Paoloacci , Maria Masiello , Giulio Esposito , Rafael Gonzalez-Olmos , Emanuela Tempesta , Francesca Trapasso , Emiliano Zampetti , Marco Torre , Ettore Guerriero , Valerio Paolini
{"title":"Assessing the efficiency of zeolites in BTEX adsorption: Impact of pore structure and humidity in single and multicomponent systems","authors":"Maria Luisa Feo , Massimiliano Frattoni , Ester Paoloacci , Maria Masiello , Giulio Esposito , Rafael Gonzalez-Olmos , Emanuela Tempesta , Francesca Trapasso , Emiliano Zampetti , Marco Torre , Ettore Guerriero , Valerio Paolini","doi":"10.1016/j.micromeso.2024.113462","DOIUrl":null,"url":null,"abstract":"<div><div>Among volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and <em>o</em>-xylene (BTEX) have attracted global attention because of their high toxicity to the environment and human health. Adsorption is considered one of the most efficient, simple and low-cost technology for VOC pollution control and zeolites have been commonly used as adsorbent for this purpose. However, the evaluation of the performance of zeolites in the adsorption of BTEX under realistic conditions such as the presence of humidity or multicomponent systems has been poorly addressed. In this study, the adsorption capacity of BTEX of seven zeolites belonging to the structural families LTA, MFI, BETA, MOR and FAU have been investigated. Zeolites have been characterized by X-ray fluorescence and nitrogen sorption measurements. The relationship between the adsorption capacity and physicochemical parameters was investigated. It was found that MFI structure was the best adsorbent for benzene and toluene reaching an adsorption capacity of 69.2 mg/g. Whereas FAU structure exhibited preference to trap ethylbenzene and <em>o</em>-xylene adsorbing up to 93.8 mg/g. Specific surface area and pore diameter of zeolites were found to be the most important parameter for BTEX adsorption. The properties of the adsorbate (molecular structure, polarity and boiling point) played also a key role in adsorption.</div><div>Si/Al ratio was a key factor in determining adsorption performance under humidity conditions with the best adsorption capacity reaching 16.9 mg/g. In multi-component system, the adsorption capacity of zeolites decreased more than 14 %. The results obtained may guide to select proper adsorbent for BTEX in real applications.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113462"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004840","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Among volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and o-xylene (BTEX) have attracted global attention because of their high toxicity to the environment and human health. Adsorption is considered one of the most efficient, simple and low-cost technology for VOC pollution control and zeolites have been commonly used as adsorbent for this purpose. However, the evaluation of the performance of zeolites in the adsorption of BTEX under realistic conditions such as the presence of humidity or multicomponent systems has been poorly addressed. In this study, the adsorption capacity of BTEX of seven zeolites belonging to the structural families LTA, MFI, BETA, MOR and FAU have been investigated. Zeolites have been characterized by X-ray fluorescence and nitrogen sorption measurements. The relationship between the adsorption capacity and physicochemical parameters was investigated. It was found that MFI structure was the best adsorbent for benzene and toluene reaching an adsorption capacity of 69.2 mg/g. Whereas FAU structure exhibited preference to trap ethylbenzene and o-xylene adsorbing up to 93.8 mg/g. Specific surface area and pore diameter of zeolites were found to be the most important parameter for BTEX adsorption. The properties of the adsorbate (molecular structure, polarity and boiling point) played also a key role in adsorption.
Si/Al ratio was a key factor in determining adsorption performance under humidity conditions with the best adsorption capacity reaching 16.9 mg/g. In multi-component system, the adsorption capacity of zeolites decreased more than 14 %. The results obtained may guide to select proper adsorbent for BTEX in real applications.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.