Niklas Jüngst, Zhiyong Wu, Can Ruan, Marcus Aldén, Zhongshan Li
{"title":"Light extinction and scattering to determine nanoparticle formation rates during droplet jetting in aluminum dust flames","authors":"Niklas Jüngst, Zhiyong Wu, Can Ruan, Marcus Aldén, Zhongshan Li","doi":"10.1016/j.powtec.2025.120633","DOIUrl":null,"url":null,"abstract":"<div><div>The combustion of aluminum powder enables a CO<sub>2</sub>-free generation of heat and electricity. To understand the asymmetric combustion of burning aluminum particles, we imaged light extinction and scattering with high speed and magnification. In the flame, particles melt, ignite, and build up a spherical flame sheet of condensed-phase alumina around the droplet. Shortly thereafter, the asymmetric stage occurs where the flame locally extinguishes, the droplet accelerates, i.e., droplet jetting, and leaves behind a condensation trail of alumina particles. Two alternately pulsed LEDs were used to image light extinction and scattering in the condensation trail at 200000 frames per second. This yields quasi-simultaneous images of transmission and scattered light. The geometry of the light-scattering experiment and Mie theory yield the collection efficiency of scattered light as a function of the particle size. An iterative calculation of the collection efficiency and the single-scattering albedo, the ratio of scattering and extinction, converges and yields the particle diameter in the Rayleigh regime. The correction for total scattered-light in the extinction yields the absorbance from which the nanoparticle volume is derived. Nanoparticles appear at the onset of the trails near the droplet and grow along the trail from around 40 nm to 110 nm until they are outside the Rayleigh regime. The nanoparticle formation rate is 50 % of the total alumina formation rate during the symmetric phase. The large occurrence frequency of droplet jetting makes it an important contribution to nanoparticle formation and to the total heat release in aluminum combustion.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"453 ","pages":"Article 120633"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025000282","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The combustion of aluminum powder enables a CO2-free generation of heat and electricity. To understand the asymmetric combustion of burning aluminum particles, we imaged light extinction and scattering with high speed and magnification. In the flame, particles melt, ignite, and build up a spherical flame sheet of condensed-phase alumina around the droplet. Shortly thereafter, the asymmetric stage occurs where the flame locally extinguishes, the droplet accelerates, i.e., droplet jetting, and leaves behind a condensation trail of alumina particles. Two alternately pulsed LEDs were used to image light extinction and scattering in the condensation trail at 200000 frames per second. This yields quasi-simultaneous images of transmission and scattered light. The geometry of the light-scattering experiment and Mie theory yield the collection efficiency of scattered light as a function of the particle size. An iterative calculation of the collection efficiency and the single-scattering albedo, the ratio of scattering and extinction, converges and yields the particle diameter in the Rayleigh regime. The correction for total scattered-light in the extinction yields the absorbance from which the nanoparticle volume is derived. Nanoparticles appear at the onset of the trails near the droplet and grow along the trail from around 40 nm to 110 nm until they are outside the Rayleigh regime. The nanoparticle formation rate is 50 % of the total alumina formation rate during the symmetric phase. The large occurrence frequency of droplet jetting makes it an important contribution to nanoparticle formation and to the total heat release in aluminum combustion.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.