Efficient Dual Cas9 Nickase Correction of a Prevalent Pathogenic LAMB3 Variant for Junctional Epidermolysis Bullosa

Alex du Rand , John Hunt , Daniel Verdon , Ben Buttle , P. Rod Dunbar , Diana Purvis , Vaughan Feisst , Hilary Sheppard
{"title":"Efficient Dual Cas9 Nickase Correction of a Prevalent Pathogenic LAMB3 Variant for Junctional Epidermolysis Bullosa","authors":"Alex du Rand ,&nbsp;John Hunt ,&nbsp;Daniel Verdon ,&nbsp;Ben Buttle ,&nbsp;P. Rod Dunbar ,&nbsp;Diana Purvis ,&nbsp;Vaughan Feisst ,&nbsp;Hilary Sheppard","doi":"10.1016/j.xjidi.2024.100343","DOIUrl":null,"url":null,"abstract":"<div><div>Gene editing facilitated by homology-directed repair represents a promising strategy for precisely correcting pathogenic variants underlying monogenic disorders, including the life-threatening skin blistering condition junctional epidermolysis bullosa (JEB). Frequent reports of unintended off-target genotoxicity associated with conventional Cas9 nuclease editing have increasingly led to the adoption of dual-Cas9 nickases (dual-Cas9n) owing to their improved safety profile. However, rates of precise repair obtained with such strategies remain low. In this study, we establish a dual-Cas9n approach targeting <em>LAMB3</em>, using electroporation to deliver Cas9-nickase ribonucleoproteins and modified single-stranded oligodeoxynucleotide repair templates into primary JEB keratinocytes. Targeting a hotspot pathogenic variant (c.1903C&gt;T, p.R635∗), we report perfect correction efficiencies of up to 54% based on standard next-generation sequencing. Using a high-fidelity Cas9 nuclease, we also report perfect repair of up to 74% when using a small-molecule modulator of DNA repair. Dual-Cas9n–corrected JEB keratinocytes demonstrated restored laminin-332 expression and secretion <em>in vitro</em>, leading to improved cellular adhesion and accurate laminin-332 localization in engineered skin equivalents. This protocol represents a significant improvement in precision gene repair using Cas9 nickases for epidermolysis bullosa, with the potential to be applied to a large cohort of patients harboring this prevalent pathogenic variant.</div></div>","PeriodicalId":73548,"journal":{"name":"JID innovations : skin science from molecules to population health","volume":"5 3","pages":"Article 100343"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JID innovations : skin science from molecules to population health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667026724000912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gene editing facilitated by homology-directed repair represents a promising strategy for precisely correcting pathogenic variants underlying monogenic disorders, including the life-threatening skin blistering condition junctional epidermolysis bullosa (JEB). Frequent reports of unintended off-target genotoxicity associated with conventional Cas9 nuclease editing have increasingly led to the adoption of dual-Cas9 nickases (dual-Cas9n) owing to their improved safety profile. However, rates of precise repair obtained with such strategies remain low. In this study, we establish a dual-Cas9n approach targeting LAMB3, using electroporation to deliver Cas9-nickase ribonucleoproteins and modified single-stranded oligodeoxynucleotide repair templates into primary JEB keratinocytes. Targeting a hotspot pathogenic variant (c.1903C>T, p.R635∗), we report perfect correction efficiencies of up to 54% based on standard next-generation sequencing. Using a high-fidelity Cas9 nuclease, we also report perfect repair of up to 74% when using a small-molecule modulator of DNA repair. Dual-Cas9n–corrected JEB keratinocytes demonstrated restored laminin-332 expression and secretion in vitro, leading to improved cellular adhesion and accurate laminin-332 localization in engineered skin equivalents. This protocol represents a significant improvement in precision gene repair using Cas9 nickases for epidermolysis bullosa, with the potential to be applied to a large cohort of patients harboring this prevalent pathogenic variant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Cover 1 Transcriptionally Active Human Papillomavirus in Male Genital Lichen Sclerosus, Penile Intraepithelial Neoplasia, and Penile Squamous Cell Carcinoma Langerhans Cells Directly Interact with Resident T Cells in the Human Epidermis Efficient Dual Cas9 Nickase Correction of a Prevalent Pathogenic LAMB3 Variant for Junctional Epidermolysis Bullosa Meeting Report on “10th Anniversary Symposium on Inflammatory Skin Disease”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1