Debora da Paz Gomes Brandão Ferraz, Raúl Sánchez Vicens
{"title":"Comparison between machine learning classification and trajectory-based change detection for identifying eucalyptus areas in Landsat time series","authors":"Debora da Paz Gomes Brandão Ferraz, Raúl Sánchez Vicens","doi":"10.1016/j.rsase.2024.101444","DOIUrl":null,"url":null,"abstract":"<div><div>In forestry, where species management has inter-annual durations, time series longer than one year have been used to map planted areas, estimate biophysical parameters, and determine planting age. Eucalyptus plantations have characteristics that enhance the use of time series in their classification, such as clear-cutting before planting or previous rotation and the rapid growth of large vegetation cover, which remains stable throughout the rotation period. This article compares the performance of two classification methods for mapping Eucalyptus areas: an object-oriented classification (GEOBIA) using products generated by the LandTrendr change detection algorithm based on trajectories and a classification using machine learning (random forest). Using a Landsat time series from 1985 to 2020, tests were conducted in a pilot area in Rio de Janeiro, Brazil. Both methods showed high accuracy in detecting Eucalyptus areas. However, the trajectory-based classification proved slightly superior, achieving a global accuracy of 0.988 and an F-Score of 0.975, while the classification using the random forest algorithm achieved a global accuracy of 0.954 and an F-score of 0.849. Regarding identifying the initial year of planting, both methods proved effective without showing significant differences (p-value = 0.1003). However, detecting the initial year using the LandTrendr algorithm proved more assertive. Both methods revealed periods of increase and stabilization in Eucalyptus planting throughout the time series, proving promising for determining the location and age of each stand and, thus, obtaining information about the time of use of that area for Eucalyptus cultivation.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101444"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In forestry, where species management has inter-annual durations, time series longer than one year have been used to map planted areas, estimate biophysical parameters, and determine planting age. Eucalyptus plantations have characteristics that enhance the use of time series in their classification, such as clear-cutting before planting or previous rotation and the rapid growth of large vegetation cover, which remains stable throughout the rotation period. This article compares the performance of two classification methods for mapping Eucalyptus areas: an object-oriented classification (GEOBIA) using products generated by the LandTrendr change detection algorithm based on trajectories and a classification using machine learning (random forest). Using a Landsat time series from 1985 to 2020, tests were conducted in a pilot area in Rio de Janeiro, Brazil. Both methods showed high accuracy in detecting Eucalyptus areas. However, the trajectory-based classification proved slightly superior, achieving a global accuracy of 0.988 and an F-Score of 0.975, while the classification using the random forest algorithm achieved a global accuracy of 0.954 and an F-score of 0.849. Regarding identifying the initial year of planting, both methods proved effective without showing significant differences (p-value = 0.1003). However, detecting the initial year using the LandTrendr algorithm proved more assertive. Both methods revealed periods of increase and stabilization in Eucalyptus planting throughout the time series, proving promising for determining the location and age of each stand and, thus, obtaining information about the time of use of that area for Eucalyptus cultivation.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems