Extraction anode lens effects in gas phase peptide cation-electron reactions

IF 1.6 3区 化学 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL International Journal of Mass Spectrometry Pub Date : 2024-12-23 DOI:10.1016/j.ijms.2024.117390
Steven A. DeFiglia , Teresa Lee , Neven N. Mikawy , Carson W. Szot , Kristina Håkansson
{"title":"Extraction anode lens effects in gas phase peptide cation-electron reactions","authors":"Steven A. DeFiglia ,&nbsp;Teresa Lee ,&nbsp;Neven N. Mikawy ,&nbsp;Carson W. Szot ,&nbsp;Kristina Håkansson","doi":"10.1016/j.ijms.2024.117390","DOIUrl":null,"url":null,"abstract":"<div><div>Gas phase cation-electron reactions, from electron capture dissociation (ECD; &lt;1 eV electrons) to electron ionization dissociation (&gt;∼26 eV electrons), are highly beneficial for biomolecular structural characterization. These techniques offer high sequence coverage, labile posttranslational modification retention, and sidechain loss fragments which can differentiate isomeric residues. For optimum performance, careful tuning of electron energy, flux, and irradiation time is required to reach efficiency at a particular energy regime. The cathode bias voltage (CBV) is the primary determinant of electron energy, while several parameters including CBV, extraction anode lens voltage (LV), and cathode heating current determine electron flux. We present an in-depth examination of how the interplay of these parameters at variable irradiation times results in differing peptide cation-electron reaction regimes. A particularly interesting finding was the prominent high energy fragmentation pathways observed at low (∼−1.0 V) CBV and high (&gt;50 V) LV, as compared with conventional (∼5 V) LV for peptide ECD. Specifically, high LV resulted in tandem ionization, observed for both singly- and doubly protonated peptides, alongside increased sequence coverage for both charge states from complex spectra containing a multitude of <em>a/b/c′/d/w/x/y′/z•</em>-type terminal fragments as well as internal fragments and a large number of neutral losses. Electron flux and energy measurements as well as electron irradiation at constant flux showed that an increased number of higher energy electrons are present at high vs. low LV, i.e., the observed “lens effect” is likely due to the presence of high energy electrons under such conditions. This extraction anode lens effect may explain previous observations of unexpected internal fragments from ECD.</div></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"509 ","pages":"Article 117390"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138738062400201X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gas phase cation-electron reactions, from electron capture dissociation (ECD; <1 eV electrons) to electron ionization dissociation (>∼26 eV electrons), are highly beneficial for biomolecular structural characterization. These techniques offer high sequence coverage, labile posttranslational modification retention, and sidechain loss fragments which can differentiate isomeric residues. For optimum performance, careful tuning of electron energy, flux, and irradiation time is required to reach efficiency at a particular energy regime. The cathode bias voltage (CBV) is the primary determinant of electron energy, while several parameters including CBV, extraction anode lens voltage (LV), and cathode heating current determine electron flux. We present an in-depth examination of how the interplay of these parameters at variable irradiation times results in differing peptide cation-electron reaction regimes. A particularly interesting finding was the prominent high energy fragmentation pathways observed at low (∼−1.0 V) CBV and high (>50 V) LV, as compared with conventional (∼5 V) LV for peptide ECD. Specifically, high LV resulted in tandem ionization, observed for both singly- and doubly protonated peptides, alongside increased sequence coverage for both charge states from complex spectra containing a multitude of a/b/c′/d/w/x/y′/z•-type terminal fragments as well as internal fragments and a large number of neutral losses. Electron flux and energy measurements as well as electron irradiation at constant flux showed that an increased number of higher energy electrons are present at high vs. low LV, i.e., the observed “lens effect” is likely due to the presence of high energy electrons under such conditions. This extraction anode lens effect may explain previous observations of unexpected internal fragments from ECD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
145
审稿时长
71 days
期刊介绍: The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics. Papers, in which standard mass spectrometry techniques are used for analysis will not be considered. IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.
期刊最新文献
Graphical abstract TOC Graphical abstract TOC Editorial Board Editorial Board Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1