CFD simulation of isolated bubbles rising in Newtonian or non-Newtonian fluids inside a thin-gap bubble column

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2025-02-01 DOI:10.1016/j.cherd.2024.12.030
Sikandar Almani , Walid Blel , Emilie Gadoin , Caroline Gentric
{"title":"CFD simulation of isolated bubbles rising in Newtonian or non-Newtonian fluids inside a thin-gap bubble column","authors":"Sikandar Almani ,&nbsp;Walid Blel ,&nbsp;Emilie Gadoin ,&nbsp;Caroline Gentric","doi":"10.1016/j.cherd.2024.12.030","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrodynamics of the bubbling process can be complex especially in thin bubble columns, when the gap has the same order of magnitude as the bubble diameter, and with complex fluids. It is then important to understand this phenomenon either by experimental investigation through optical methods such as shadowgraphy and/or Particle Image Velocimetry (PIV) or numerically by Computational Fluid Dynamics (CFD), which, when validated, can allow numerical experimentation in situations which are expensive to implement experimentally or time consuming. In this study, three-dimensional numerical simulations of isolated bubbles rising in Newtonian (water) or non-Newtonian (CarboxyMethyl Cellulose (CMC) and Xanthan Gum (XG) solutions) liquid phases mimicking <em>Chlorella vulgaris</em> cultures at 42 g.L<sup>−1</sup> concentration inside a 4 mm gap bubble column are performed using the volume of fluid (VOF) model with the ANSYS FLUENT 17.2 code. Results are validated by comparison with shadowgraphy experiments. Bubble terminal velocity, shape, and trajectory are numerically analysed. Wall shear stress (WSS) induced by the bubble, strain rate, viscosity and flow field around the bubble are also discussed. Numerical results show similar trends as experimental ones despite slightly lower terminal velocity and aspect ratio values are observed in comparison to the experimental results. The trajectory of the bubble is non-rectilinear for water and rectilinear for non-Newtonian fluids as observed experimentally. This numerical study highlights the bubble-liquid and bubble-wall interactions that will help to understand the complex phenomena of bubble rise in non-Newtonian media/microalgae suspensions at high concentrations at the local level in thin-gap bubble columns.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"214 ","pages":"Pages 202-218"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224007093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrodynamics of the bubbling process can be complex especially in thin bubble columns, when the gap has the same order of magnitude as the bubble diameter, and with complex fluids. It is then important to understand this phenomenon either by experimental investigation through optical methods such as shadowgraphy and/or Particle Image Velocimetry (PIV) or numerically by Computational Fluid Dynamics (CFD), which, when validated, can allow numerical experimentation in situations which are expensive to implement experimentally or time consuming. In this study, three-dimensional numerical simulations of isolated bubbles rising in Newtonian (water) or non-Newtonian (CarboxyMethyl Cellulose (CMC) and Xanthan Gum (XG) solutions) liquid phases mimicking Chlorella vulgaris cultures at 42 g.L−1 concentration inside a 4 mm gap bubble column are performed using the volume of fluid (VOF) model with the ANSYS FLUENT 17.2 code. Results are validated by comparison with shadowgraphy experiments. Bubble terminal velocity, shape, and trajectory are numerically analysed. Wall shear stress (WSS) induced by the bubble, strain rate, viscosity and flow field around the bubble are also discussed. Numerical results show similar trends as experimental ones despite slightly lower terminal velocity and aspect ratio values are observed in comparison to the experimental results. The trajectory of the bubble is non-rectilinear for water and rectilinear for non-Newtonian fluids as observed experimentally. This numerical study highlights the bubble-liquid and bubble-wall interactions that will help to understand the complex phenomena of bubble rise in non-Newtonian media/microalgae suspensions at high concentrations at the local level in thin-gap bubble columns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Inside Front Cover Contents Regeneration of saturated activated carbon by low-voltage arcing method: Insight from nature water treatment Antibacterial effect of ethyl-methylimidazolium-based ionic liquids anions on forward osmosis membranes Effects of inlet water flow and potential aggregate breakage on the change of turbid particle size distribution during coagulation-sedimentation-filtration (CSF): Pilot-scale experimental and CFD-aided studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1