Optimal placement and upgrade of solar PV integration in a grid-connected solar photovoltaic system

Edward Dodzi Amekah , Emmanuel Wendsongre Ramde , David Ato Quansah , Elvis Twumasi , Stefanie Meilinger , Thorsten Schneiders
{"title":"Optimal placement and upgrade of solar PV integration in a grid-connected solar photovoltaic system","authors":"Edward Dodzi Amekah ,&nbsp;Emmanuel Wendsongre Ramde ,&nbsp;David Ato Quansah ,&nbsp;Elvis Twumasi ,&nbsp;Stefanie Meilinger ,&nbsp;Thorsten Schneiders","doi":"10.1016/j.solcom.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><div>The shift towards renewable energy sources has heightened the interest in solar photovoltaic (SPV) systems, particularly in grid-connected configurations, to enhance energy security and reduce carbon emissions. Grid-tied SPVs face power quality challenges when specific grid codes are compromised. This study investigates and upgrades an integrated 90 kWp solar plant within a distribution network, leveraging data from Ghana's Energy Self-Sufficiency for Health Facilities (EnerSHelF) project. The research explores four scenarios for SPV placement optimization using dynamic programming and the Conditional New Adaptive Foraging Tree Squirrel Search Algorithm (CNAFTSSA). A Python-based simulation identifies three scenarios, high load nodes, voltage drop nodes, and system loss nodes, as the points for placing PV for better performance. The analysis revealed 85 %, 82.88 %, and 100 % optimal SPV penetration levels for placing the SPV at high load, voltage drop, and loss nodes. System active power losses were reduced by 72.97 %, 71.52 %, and 70.15 %, and reactive power losses by 73.12 %, 71.86 %, and 68.11 %, respectively, by placing the SPV at the above three categories of nodes. The fourth scenario applies to CNAFTSSA, achieving 100 % SPV penetration and reducing active and reactive power losses by 72.33 % and 72.55 %, respectively. This approach optimizes the voltage regulation (VR) from 24.92 % to 4.16 %, outperforming the VR of PV placement at high load nodes, voltage drop nodes, and loss nodes, where the voltage regulations are 5.25 %, 9.36 %, and 9.64 %, respectively. The novel CNAFTSSA for optimal SPV placement demonstrates its effectiveness in achieving higher penetration levels and improving system losses and VR. The findings highlight the effectiveness of strategic SPV placement and offer a comprehensive methodology that can be adapted for similar power distribution systems.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"12 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294002400033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The shift towards renewable energy sources has heightened the interest in solar photovoltaic (SPV) systems, particularly in grid-connected configurations, to enhance energy security and reduce carbon emissions. Grid-tied SPVs face power quality challenges when specific grid codes are compromised. This study investigates and upgrades an integrated 90 kWp solar plant within a distribution network, leveraging data from Ghana's Energy Self-Sufficiency for Health Facilities (EnerSHelF) project. The research explores four scenarios for SPV placement optimization using dynamic programming and the Conditional New Adaptive Foraging Tree Squirrel Search Algorithm (CNAFTSSA). A Python-based simulation identifies three scenarios, high load nodes, voltage drop nodes, and system loss nodes, as the points for placing PV for better performance. The analysis revealed 85 %, 82.88 %, and 100 % optimal SPV penetration levels for placing the SPV at high load, voltage drop, and loss nodes. System active power losses were reduced by 72.97 %, 71.52 %, and 70.15 %, and reactive power losses by 73.12 %, 71.86 %, and 68.11 %, respectively, by placing the SPV at the above three categories of nodes. The fourth scenario applies to CNAFTSSA, achieving 100 % SPV penetration and reducing active and reactive power losses by 72.33 % and 72.55 %, respectively. This approach optimizes the voltage regulation (VR) from 24.92 % to 4.16 %, outperforming the VR of PV placement at high load nodes, voltage drop nodes, and loss nodes, where the voltage regulations are 5.25 %, 9.36 %, and 9.64 %, respectively. The novel CNAFTSSA for optimal SPV placement demonstrates its effectiveness in achieving higher penetration levels and improving system losses and VR. The findings highlight the effectiveness of strategic SPV placement and offer a comprehensive methodology that can be adapted for similar power distribution systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental analysis on a solar photovoltaic indoor cooker integrated with an energy storage system: A positive step towards clean cooking transition for Sub-Saharan Africa Comparative analysis of bifacial and monofacial FPV system in the UK Improving optical efficiency of linear Fresnel collectors in the Sahel via position and length adjustment Integral ecology approach to life cycle assessment of solar arrays Study on the comparative performances of the solar stills with two different condensing glass cover shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1