Enhanced lithological mapping via remote sensing: Employing SVM, random trees, ANN, with MNF and PCA transformations

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2024-12-26 DOI:10.1016/j.ejrs.2024.12.001
Mohamed Ali El-Omairi, Manal El Garouani, Abdelkader El Garouani
{"title":"Enhanced lithological mapping via remote sensing: Employing SVM, random trees, ANN, with MNF and PCA transformations","authors":"Mohamed Ali El-Omairi,&nbsp;Manal El Garouani,&nbsp;Abdelkader El Garouani","doi":"10.1016/j.ejrs.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the performance of three classification algorithms—Support Vector Machines (SVM), Random Trees (RT), and Artificial Neural Networks (ANN)—applied to Landsat 9 and Sentinel-2 spectral data for lithological mapping. The study area, located in the Central Anti-Atlas, is covered by the 1:50,000 geological map of Aït Semgane, featuring diverse geological formations, ideal for testing advanced remote sensing techniques. Results show that SVM, particularly with Minimum Noise Fraction (MNF) transformation, offers the best performance. For Sentinel-2 images, SVM with MNF achieves high user and producer accuracies and well-defined lithological boundaries. While RT and ANN also show good performance, they are slightly inferior to SVM, with RT achieving a Kappa index of 0.84 for raw Landsat 9 bands and ANN obtaining a maximum of 0.75 for Sentinel-2 data transformed with MNF. The MNF transformation generally improves SVM and ANN performance, whereas Principal Component Analysis (PCA) often produces inferior results. The robustness of SVM for high-dimensional data and its resistance to overfitting make it a promising tool for accurate lithological classification. This research has practical implications for geology and Earth sciences. The use of dimensionality reduction, particularly MNF, can greatly enhance classification quality for multispectral and hyperspectral data. These results are not only valuable for improving geological mapping, mineral exploration, and natural resource management at local and regional scales but also have significant potential for large-scale terrain analysis in diverse global contexts. The findings could support global efforts in geological hazard assessments, resource management, and environmental monitoring, particularly in regions with challenging geological settings. The study also proposes future research directions, such as exploring new dimensionality reduction techniques, evaluating classification methods with different remote sensing datasets, and integrating geophysical or geochemical data to further improve accuracy</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 1","pages":"Pages 34-52"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000863","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the performance of three classification algorithms—Support Vector Machines (SVM), Random Trees (RT), and Artificial Neural Networks (ANN)—applied to Landsat 9 and Sentinel-2 spectral data for lithological mapping. The study area, located in the Central Anti-Atlas, is covered by the 1:50,000 geological map of Aït Semgane, featuring diverse geological formations, ideal for testing advanced remote sensing techniques. Results show that SVM, particularly with Minimum Noise Fraction (MNF) transformation, offers the best performance. For Sentinel-2 images, SVM with MNF achieves high user and producer accuracies and well-defined lithological boundaries. While RT and ANN also show good performance, they are slightly inferior to SVM, with RT achieving a Kappa index of 0.84 for raw Landsat 9 bands and ANN obtaining a maximum of 0.75 for Sentinel-2 data transformed with MNF. The MNF transformation generally improves SVM and ANN performance, whereas Principal Component Analysis (PCA) often produces inferior results. The robustness of SVM for high-dimensional data and its resistance to overfitting make it a promising tool for accurate lithological classification. This research has practical implications for geology and Earth sciences. The use of dimensionality reduction, particularly MNF, can greatly enhance classification quality for multispectral and hyperspectral data. These results are not only valuable for improving geological mapping, mineral exploration, and natural resource management at local and regional scales but also have significant potential for large-scale terrain analysis in diverse global contexts. The findings could support global efforts in geological hazard assessments, resource management, and environmental monitoring, particularly in regions with challenging geological settings. The study also proposes future research directions, such as exploring new dimensionality reduction techniques, evaluating classification methods with different remote sensing datasets, and integrating geophysical or geochemical data to further improve accuracy
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Surface deformation of the 26 January 2021 earthquake in the Sinjar – Hasakah Area, N Iraq and NE Syria, from Sentinel‑1A InSAR images New insights into the Menyuan Ms6.9 Earthquake, China: 3D slip inversion and fault modeling based on InSAR remote sensing approach Identifying water-lubricated faults in the vicinity of a dam Cot-DCN-YOLO: Self-attention-enhancing YOLOv8s for detecting garbage bins in urban street view images Fusing satellite imagery and ground geochemical data to map alteration zones for gold exploration in western Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1