Comparison and accuracy assessment of unmanned aerial vehicle and terrestrial measurement in base map production

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2025-01-08 DOI:10.1016/j.ejrs.2024.12.003
Veysel Yildiz, Aydan Yaman
{"title":"Comparison and accuracy assessment of unmanned aerial vehicle and terrestrial measurement in base map production","authors":"Veysel Yildiz,&nbsp;Aydan Yaman","doi":"10.1016/j.ejrs.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>In the present era, unmanned aerial vehicles (UAVs) have become a prevalent tool for data and map production in the domain of remote sensing and photogrammetry, driven by advancements in technology. The production of base maps has become more straightforward, precise, economical, and time-efficient in recent years, largely due to the advent of UAVs and the subsequent development of new techniques. The base maps of the area were produced using two methods: Terrestrial measurement and UAV data. The squared mean errors were calculated and found to be my = ±1.49 cm, mx= ±1.58 cm and m<sub>z</sub> = ±2.52 cm for ground control points, m<sub>y</sub> = ±1.54 cm, m<sub>x</sub>= ±1.65 cm and m<sub>z</sub> = ±2.55 cm for check points and my = ±2.41 cm, mx= ±2.66 cm and m<sub>z</sub>= ±3.47 cm for detail points. The results were found to fall within the specified limit values. It was therefore concluded that UAVs provide the anticipated accuracy for the production of base maps, which are required to be continually updated and form the basis for a range of projects and can be readily employed in this regard. This study demonstrates that base maps produced with UAV data meet the requisite scientific and academic standards, including accuracy and precision. Additionally, it illuminates the advantages of UAV data in base map production, particularly in terms of time, accuracy, and cost.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 1","pages":"Pages 53-62"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000875","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present era, unmanned aerial vehicles (UAVs) have become a prevalent tool for data and map production in the domain of remote sensing and photogrammetry, driven by advancements in technology. The production of base maps has become more straightforward, precise, economical, and time-efficient in recent years, largely due to the advent of UAVs and the subsequent development of new techniques. The base maps of the area were produced using two methods: Terrestrial measurement and UAV data. The squared mean errors were calculated and found to be my = ±1.49 cm, mx= ±1.58 cm and mz = ±2.52 cm for ground control points, my = ±1.54 cm, mx= ±1.65 cm and mz = ±2.55 cm for check points and my = ±2.41 cm, mx= ±2.66 cm and mz= ±3.47 cm for detail points. The results were found to fall within the specified limit values. It was therefore concluded that UAVs provide the anticipated accuracy for the production of base maps, which are required to be continually updated and form the basis for a range of projects and can be readily employed in this regard. This study demonstrates that base maps produced with UAV data meet the requisite scientific and academic standards, including accuracy and precision. Additionally, it illuminates the advantages of UAV data in base map production, particularly in terms of time, accuracy, and cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Surface deformation of the 26 January 2021 earthquake in the Sinjar – Hasakah Area, N Iraq and NE Syria, from Sentinel‑1A InSAR images New insights into the Menyuan Ms6.9 Earthquake, China: 3D slip inversion and fault modeling based on InSAR remote sensing approach Identifying water-lubricated faults in the vicinity of a dam Cot-DCN-YOLO: Self-attention-enhancing YOLOv8s for detecting garbage bins in urban street view images Fusing satellite imagery and ground geochemical data to map alteration zones for gold exploration in western Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1