Beekeeping suitability prediction based on an adaptive neuro-fuzzy inference system and apiary level data

IF 7.3 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2025-01-23 DOI:10.1016/j.ecoinf.2025.103015
Guy A. Fotso Kamga , Yacine Bouroubi , Mickaël Germain , Georges Martin , Laurent Bitjoka
{"title":"Beekeeping suitability prediction based on an adaptive neuro-fuzzy inference system and apiary level data","authors":"Guy A. Fotso Kamga ,&nbsp;Yacine Bouroubi ,&nbsp;Mickaël Germain ,&nbsp;Georges Martin ,&nbsp;Laurent Bitjoka","doi":"10.1016/j.ecoinf.2025.103015","DOIUrl":null,"url":null,"abstract":"<div><div>The study employs a predictive modelling approach using a fuzzy inference system to assess the beekeeping potential of a geographic area. Specifically, an adaptive neuro-fuzzy inference system with subtractive clustering (ANFIS-SC) was utilized, incorporating six input variables that influence <em>Apis mellifera</em> health and productivity, and field data as the output variable reflecting the state of a colony. The results demonstrate the model’s effectiveness in predicting the suitability of areas for beekeeping. Sensitivity analysis highlighted the significant effects of relative humidity on the model’s output. The research underscores the importance of data quality, particularly in determining the local land cover quality index (LLCQI), on the outcomes. This study highlights the role of data science in enhancing precision in beekeeping and proposes its integration into management practices to support honey bee health.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103015"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157495412500024X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study employs a predictive modelling approach using a fuzzy inference system to assess the beekeeping potential of a geographic area. Specifically, an adaptive neuro-fuzzy inference system with subtractive clustering (ANFIS-SC) was utilized, incorporating six input variables that influence Apis mellifera health and productivity, and field data as the output variable reflecting the state of a colony. The results demonstrate the model’s effectiveness in predicting the suitability of areas for beekeeping. Sensitivity analysis highlighted the significant effects of relative humidity on the model’s output. The research underscores the importance of data quality, particularly in determining the local land cover quality index (LLCQI), on the outcomes. This study highlights the role of data science in enhancing precision in beekeeping and proposes its integration into management practices to support honey bee health.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应神经模糊推理系统和蜂房水平数据的养蜂适宜性预测
该研究采用了一种预测建模方法,使用模糊推理系统来评估一个地理区域的养蜂潜力。具体而言,采用一种带有减法聚类的自适应神经模糊推理系统(ANFIS-SC),将影响蜜蜂健康和生产力的6个输入变量和反映群体状态的现场数据作为输出变量。结果表明,该模型在预测养蜂区适宜性方面是有效的。敏感性分析强调了相对湿度对模型输出的显著影响。这项研究强调了数据质量对结果的重要性,特别是在确定当地土地覆盖质量指数(LLCQI)方面。本研究强调了数据科学在提高养蜂精度方面的作用,并建议将其整合到管理实践中,以支持蜜蜂健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
Large language vision models for zero-shot handwriting recognition of historical herbarium labels PNW-Cnet: An evolving convolutional neural network to support broad-scale passive acoustic monitoring Copula–information gain-based identification of GPP response thresholds under multiscale agricultural drought Explainable AI-based modeling of chlorophyll-a using water quality and DOM characteristics: Toward interpretable prediction and actionable management strategies Developing a deep learning-based image analysis model for high-throughput micronucleus assays: Genotoxicity as a sediment quality indicator in East Taihu and Yangcheng Lakes, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1