A brief overview of deep generative models and how they can be used to discover new electrode materials

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2025-02-01 DOI:10.1016/j.coelec.2024.101629
Anders Hellman
{"title":"A brief overview of deep generative models and how they can be used to discover new electrode materials","authors":"Anders Hellman","doi":"10.1016/j.coelec.2024.101629","DOIUrl":null,"url":null,"abstract":"<div><div>As humankind searches for sustainable energy solutions, the demand for electrochemistry has increased. Thus, new and more advanced electrode materials are required. However, finding electrodes that meet the necessary performance is a challenge. Machine learning models can predict key properties such as catalytic activity and stability with surprisingly good accuracy, thus accelerating the process of evaluating materials. However, in most cases, the same models cannot explain how to generate new material compositions. Here, deep generative models can become very valuable. Although issues related to data availability and understanding how these models work still exist, combining deep generative models with computer simulations and laboratory experiments hold great potential for developing the next generation of electrodes. This short review will show recent progress in using deep generative models in related material fields and stress how these models can accelerate the discovery of electrode materials.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101629"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245191032400190X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As humankind searches for sustainable energy solutions, the demand for electrochemistry has increased. Thus, new and more advanced electrode materials are required. However, finding electrodes that meet the necessary performance is a challenge. Machine learning models can predict key properties such as catalytic activity and stability with surprisingly good accuracy, thus accelerating the process of evaluating materials. However, in most cases, the same models cannot explain how to generate new material compositions. Here, deep generative models can become very valuable. Although issues related to data availability and understanding how these models work still exist, combining deep generative models with computer simulations and laboratory experiments hold great potential for developing the next generation of electrodes. This short review will show recent progress in using deep generative models in related material fields and stress how these models can accelerate the discovery of electrode materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Interdigitated microband electrode arrays in paired organic electrosyntheses: Sustainability and practicality Editorial overview: From fundamental insights to inspiration for clean and sustainable biotechnology Editorial Board Organic and molecular electrochemistry (2024)–Fresh impetus for organic synthesis Investigating on-chip micro- and nanodevices for engineering electrocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1