HyungKuk Ju , Donghyun Yoon , Sungyool Bong , Jaeyoung Lee
{"title":"Challenge and opportunity in scaling-up hydrogen production via electrochemical ammonia electrolysis process","authors":"HyungKuk Ju , Donghyun Yoon , Sungyool Bong , Jaeyoung Lee","doi":"10.1016/j.coelec.2024.101609","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen as a clean carrier has received considerable attention due to its potential in sustainable energy systems. However, the prevalent hydrogen production methods, notably steam reforming from natural gas, present environmental challenges, primarily CO<sub>2</sub> emissions. In here, we aim to provide insights into the scalability of hydrogen production through electrochemical ammonia electrolysis to hydrogen production (eAEH), proposing ammonia as an effective hydrogen carrier to mitigate these environmental concerns. Our focus is on the ammonia oxidation reaction (AOR) within the electrochemical decomposition framework, underscoring the operation at a low reversible cell voltage to significantly enhance energy efficiency. We explore strategies to scale up eAEH, analyzing the potential and limitations of various electrocatalysts, and examining the feasibility of employing machine learning techniques for optimal catalyst selection. Thus, the AOR research represents a pivotal technological innovation for the sustainable energy transition, potentially establishing a critical foundation for advancing a hydrogen economy.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101609"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001704","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen as a clean carrier has received considerable attention due to its potential in sustainable energy systems. However, the prevalent hydrogen production methods, notably steam reforming from natural gas, present environmental challenges, primarily CO2 emissions. In here, we aim to provide insights into the scalability of hydrogen production through electrochemical ammonia electrolysis to hydrogen production (eAEH), proposing ammonia as an effective hydrogen carrier to mitigate these environmental concerns. Our focus is on the ammonia oxidation reaction (AOR) within the electrochemical decomposition framework, underscoring the operation at a low reversible cell voltage to significantly enhance energy efficiency. We explore strategies to scale up eAEH, analyzing the potential and limitations of various electrocatalysts, and examining the feasibility of employing machine learning techniques for optimal catalyst selection. Thus, the AOR research represents a pivotal technological innovation for the sustainable energy transition, potentially establishing a critical foundation for advancing a hydrogen economy.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •