C. Gómez-Sacedón , A.R. González-Elipe , V. Rodríguez-Pintor , J.M. Luque-Centeno , F. Yubero , J. Gil-Rostra , A. de Lucas-Consuegra
{"title":"Recent advances in electrocatalysts fabrication by magnetron sputtering for alkaline water electrolysis","authors":"C. Gómez-Sacedón , A.R. González-Elipe , V. Rodríguez-Pintor , J.M. Luque-Centeno , F. Yubero , J. Gil-Rostra , A. de Lucas-Consuegra","doi":"10.1016/j.coelec.2024.101622","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetron sputtering (MS) is an emerging technique to prepare electrocatalysts for oxygen and hydrogen evolution reactions that take place in alkaline water electrolysis. It is a physical vapour deposition method that provides a strict control over the composition, chemical state, and microstructure. It permits to adjust complex stoichiometries and guarantees reproducibility. This technology allows to deposit electrocatalysts on suitable current collectors to get anode and cathode electrodes in a one-step process. Furthermore, MS is an environment friendly technology with easy scalability for industrial electrode production. Additionally, when operated in an oblique angle deposition configuration, it allows precise control of the microstructure of the deposits that can be tuned from compact to mesoporous. On this brief review we discuss recent studies on the field showing the possibility of using MS for the preparation of catalyst layers with complex compositions, bi-layer structure configurations, and bimetallic, trimetallic, and multicomponent alloys.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101622"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001832","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetron sputtering (MS) is an emerging technique to prepare electrocatalysts for oxygen and hydrogen evolution reactions that take place in alkaline water electrolysis. It is a physical vapour deposition method that provides a strict control over the composition, chemical state, and microstructure. It permits to adjust complex stoichiometries and guarantees reproducibility. This technology allows to deposit electrocatalysts on suitable current collectors to get anode and cathode electrodes in a one-step process. Furthermore, MS is an environment friendly technology with easy scalability for industrial electrode production. Additionally, when operated in an oblique angle deposition configuration, it allows precise control of the microstructure of the deposits that can be tuned from compact to mesoporous. On this brief review we discuss recent studies on the field showing the possibility of using MS for the preparation of catalyst layers with complex compositions, bi-layer structure configurations, and bimetallic, trimetallic, and multicomponent alloys.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •