Association of climate variability modes with concurrent droughts and heatwaves in India

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Hydrology X Pub Date : 2025-01-01 DOI:10.1016/j.hydroa.2024.100196
Ruhhee Tabbussum , Rajarshi Das Bhowmik , Pradeep Mujumdar
{"title":"Association of climate variability modes with concurrent droughts and heatwaves in India","authors":"Ruhhee Tabbussum ,&nbsp;Rajarshi Das Bhowmik ,&nbsp;Pradeep Mujumdar","doi":"10.1016/j.hydroa.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><div>The natural variability in the occurrence of concurrent extremes of droughts and heatwaves is frequently attributed to climate change and anthropogenic causes, disregarding its association with large-scale global teleconnections. This study explores this association by demonstrating how concurrent droughts and heatwaves (CDHW) in India are temporally and spatially connected to multiple global teleconnections (referred to as climate variability modes). Composite and wavelet coherence analyses are implemented for the univariate evaluation of droughts and heatwaves—measured using the standardized precipitation index (SPI) and the standardized heat index (SHI), respectively—in relation to the climate variability modes. Furthermore, an attribution table framework is employed to examine the extremal dependence of concurrent heatwaves and droughts in India on the climate variability modes during 1951–2018. The results exhibit a higher probability of CDHW events when they are preceded by a large-scale global teleconnection. Overall, the insights drawn from this study suggest the possibility of relying on the climate variability modes to issue season-ahead forecasts of CDHW.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"26 ","pages":"Article 100196"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915524000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The natural variability in the occurrence of concurrent extremes of droughts and heatwaves is frequently attributed to climate change and anthropogenic causes, disregarding its association with large-scale global teleconnections. This study explores this association by demonstrating how concurrent droughts and heatwaves (CDHW) in India are temporally and spatially connected to multiple global teleconnections (referred to as climate variability modes). Composite and wavelet coherence analyses are implemented for the univariate evaluation of droughts and heatwaves—measured using the standardized precipitation index (SPI) and the standardized heat index (SHI), respectively—in relation to the climate variability modes. Furthermore, an attribution table framework is employed to examine the extremal dependence of concurrent heatwaves and droughts in India on the climate variability modes during 1951–2018. The results exhibit a higher probability of CDHW events when they are preceded by a large-scale global teleconnection. Overall, the insights drawn from this study suggest the possibility of relying on the climate variability modes to issue season-ahead forecasts of CDHW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
期刊最新文献
Association of climate variability modes with concurrent droughts and heatwaves in India Climatology of extreme precipitation spells induced by cloudburst-like events during the Indian Summer Monsoon AutoVL: Automated streamflow separation for changing catchments and climate impact analysis Practical application of time-lapse camera imagery to develop water-level data for three hydrologic monitoring sites in Wisconsin during water year 2020 Hydrograph and recession flows simulations using deep learning: Watershed uniqueness and objective functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1