Facile synthesis of highly active and reusable NiO/montmorillonite photocatalyst for tetracycline removal by photocatalytic oxidation

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2025-02-01 DOI:10.1016/j.inoche.2024.113731
Is Fatimah , Yusril Syu’aib , Galih Dwiki Ramanda , Fethi Kooli , Suresh Sagadevan , Won-Chun Oh
{"title":"Facile synthesis of highly active and reusable NiO/montmorillonite photocatalyst for tetracycline removal by photocatalytic oxidation","authors":"Is Fatimah ,&nbsp;Yusril Syu’aib ,&nbsp;Galih Dwiki Ramanda ,&nbsp;Fethi Kooli ,&nbsp;Suresh Sagadevan ,&nbsp;Won-Chun Oh","doi":"10.1016/j.inoche.2024.113731","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocomposite of dispersed nickel oxide nanoparticles into montmorillonite (NiO/Mt) was synthesized by using hydrothermal impregnation method. The obtained solids were characterized by x-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray fluorescence (SEM-EDX), transmission electron microscope (TEM), C-ray photoelectron spectroscopy (XPS), gas sorption analyzer using N<sub>2</sub> adsorption–desorption at 77 K and UV–Visible diffuse reflectance spectrophotometry (UV-DRS). The prepared material was evaluated as photocatalyst for tetracycline (TC) removal photocatalytic oxidation with activated hydrogen peroxide as the oxidizing agent. The kinetics of TC removal over varied methods, influence of the amount of H<sub>2</sub>O<sub>2</sub>, and study on photocatalytic mechanism by evaluating effect of scavenger were investigated. Physicochemical characterization recognized that nickel oxide nanoparticles with particles’ size ranging from 10 to 20 nm was homogeneously dispersed in the montmorillonite support as expressed by SEM, TEM and XPS analysis. Small amount of dispersed Ni (4.55 % wt.) does not show the significant improvement to the specific surface area and porosity of the montmorillonite but expresses the band gap energy of 3.5 eV which supports the activity as photocatalyst. It is found that the nanocomposite has excellent photocatalytic activity in TC removal by the removal efficiency of about 94.2 % and 75.5 % under UV and visible light exposure, respectively. The nanocomposite demonstrated recyclability and reusability with no-significant altered activity until 5th use. This work could not only provide a facile method to fabricate low-cost photocatalyst but also contribute to the design for photocatalyst application in pharmaceuticals-contaminated water.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"172 ","pages":"Article 113731"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324017210","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocomposite of dispersed nickel oxide nanoparticles into montmorillonite (NiO/Mt) was synthesized by using hydrothermal impregnation method. The obtained solids were characterized by x-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray fluorescence (SEM-EDX), transmission electron microscope (TEM), C-ray photoelectron spectroscopy (XPS), gas sorption analyzer using N2 adsorption–desorption at 77 K and UV–Visible diffuse reflectance spectrophotometry (UV-DRS). The prepared material was evaluated as photocatalyst for tetracycline (TC) removal photocatalytic oxidation with activated hydrogen peroxide as the oxidizing agent. The kinetics of TC removal over varied methods, influence of the amount of H2O2, and study on photocatalytic mechanism by evaluating effect of scavenger were investigated. Physicochemical characterization recognized that nickel oxide nanoparticles with particles’ size ranging from 10 to 20 nm was homogeneously dispersed in the montmorillonite support as expressed by SEM, TEM and XPS analysis. Small amount of dispersed Ni (4.55 % wt.) does not show the significant improvement to the specific surface area and porosity of the montmorillonite but expresses the band gap energy of 3.5 eV which supports the activity as photocatalyst. It is found that the nanocomposite has excellent photocatalytic activity in TC removal by the removal efficiency of about 94.2 % and 75.5 % under UV and visible light exposure, respectively. The nanocomposite demonstrated recyclability and reusability with no-significant altered activity until 5th use. This work could not only provide a facile method to fabricate low-cost photocatalyst but also contribute to the design for photocatalyst application in pharmaceuticals-contaminated water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
Green synthesis and characterization of ZnO nanoparticles using Justicia Schemperiana leaf extract and its antibacterial and antioxidant activity Integration of Bi2WO6 nanoparticles onto SrTiO3 microflowers for efficient solar light-driven photocatalytic cefixime degradation and hexavalent chromium reduction MWCNTs impregnated with iron and copper nanoparticles by green synthesis for the removal of paraquat from aqueous solutions Investigation of the properties of mesoporous-SiO2 filled EPDM (ethylene propylene diene monomer) rubber Engineering of cobalt impregnated sponge like spinel nickel ferrite as an efficient electrocatalyst for sustained overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1