Finite element approach for free vibration and transient response of bi-directional functionally graded sandwich porous skew-plates with variable thickness subjected to blast load

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2024-12-01 DOI:10.1016/j.dt.2024.08.022
Hong Nguyen Thi
{"title":"Finite element approach for free vibration and transient response of bi-directional functionally graded sandwich porous skew-plates with variable thickness subjected to blast load","authors":"Hong Nguyen Thi","doi":"10.1016/j.dt.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><div>At the first time, the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous (BFGSP) skew plates. The whole BFGSP skew-plates is placed on a variable visco-elastic foundation (VEF) in the hygro-thermal environment and subjected to the blast load. The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate, thereby faithfully representing the real behavior of the structure itself. The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node, which is approximated using Lagrange Q<sub>4</sub> shape function and C<sup>1</sup> level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory. The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-β direct integration technique. Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources. Furthermore, a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate. The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces, such as explosions and impacts load.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"42 ","pages":"Pages 83-104"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

At the first time, the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous (BFGSP) skew plates. The whole BFGSP skew-plates is placed on a variable visco-elastic foundation (VEF) in the hygro-thermal environment and subjected to the blast load. The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate, thereby faithfully representing the real behavior of the structure itself. The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node, which is approximated using Lagrange Q4 shape function and C1 level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory. The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-β direct integration technique. Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources. Furthermore, a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate. The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces, such as explosions and impacts load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board A novel transient strategy: transient electronics based on energetic materials Synthesis of energetic materials by microfluidics Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite The hydrodynamic RAM effect: Review of historic experiments, model developments and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1