Radioprotective effects of polysaccharides from Poria cocos peels against 60Co-γ induced oxidative damage in vitro and in vivo

IF 5.2 Q1 FOOD SCIENCE & TECHNOLOGY Journal of Future Foods Pub Date : 2025-01-29 DOI:10.1016/j.jfutfo.2024.11.006
Keke Suo , Chaoqiang Zheng , Zhipeng Li , Limin Hao , Jiaqing Zhu , Changcheng Zhao , Yanling Shi , Juanjuan Yi , Jike Lu
{"title":"Radioprotective effects of polysaccharides from Poria cocos peels against 60Co-γ induced oxidative damage in vitro and in vivo","authors":"Keke Suo ,&nbsp;Chaoqiang Zheng ,&nbsp;Zhipeng Li ,&nbsp;Limin Hao ,&nbsp;Jiaqing Zhu ,&nbsp;Changcheng Zhao ,&nbsp;Yanling Shi ,&nbsp;Juanjuan Yi ,&nbsp;Jike Lu","doi":"10.1016/j.jfutfo.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Ionizing radiation (IR) can produce superfluous reactive oxygen species (ROS) and induce oxidative damage to human health. In view of the shortcomings of chemosynthetic radioprotectors, natural radioprotectors have garnered attention due to their effectiveness, safety, and suitability for long-term use. Natural active substances, such as polysaccharides, polyphenols and alkaloids, have been proved exert good radioprotective effect. In the present study, the main components and monosaccharide compositions of the polysaccharides from <em>Poria cocos</em> peels (PCPP) and its radioprotective activities against <sup>60</sup>Co-γ induced oxidative damage <em>in vitro</em> and <em>in vivo</em> were evaluated. The results showed that PCPP contained (63.13 ± 3.19)% of total sugar and was composed of mannose, arabinose, glucuronic acid, galacturonic acid, glucose, galactose and fucose in a molar radio of 104.84:1.34:2.83:1.00:290.48:243.30:79.63. Moreover, PCPP exhibited significant antioxidant activity and could significantly reduce the damage of AML-12 cells under IR. Animal experiment results showed that PCPP could effectively reduce IR-induced oxidative damage of spleens and livers in mice, and alleviate the damage to the hematopoietic system. Furthermore, PCPP could greatly increase the activity of superoxide dismutase (SOD) and the content of glutathione (GSH) in serum, livers and spleens of <sup>60</sup>Co-γ induced mice, and correspondingly reduce the accumulation of malondialdehyde (MDA), along with the prominent reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and livers in mice. Above results comprehensively indicated that PCPP exerted significant antioxidant activity and could effectively reduce the <sup>60</sup>Co-γ induced damage <em>in vitro</em> and <em>in vivo</em>.</div></div>","PeriodicalId":100784,"journal":{"name":"Journal of Future Foods","volume":"5 6","pages":"Pages 582-590"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772566924000934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ionizing radiation (IR) can produce superfluous reactive oxygen species (ROS) and induce oxidative damage to human health. In view of the shortcomings of chemosynthetic radioprotectors, natural radioprotectors have garnered attention due to their effectiveness, safety, and suitability for long-term use. Natural active substances, such as polysaccharides, polyphenols and alkaloids, have been proved exert good radioprotective effect. In the present study, the main components and monosaccharide compositions of the polysaccharides from Poria cocos peels (PCPP) and its radioprotective activities against 60Co-γ induced oxidative damage in vitro and in vivo were evaluated. The results showed that PCPP contained (63.13 ± 3.19)% of total sugar and was composed of mannose, arabinose, glucuronic acid, galacturonic acid, glucose, galactose and fucose in a molar radio of 104.84:1.34:2.83:1.00:290.48:243.30:79.63. Moreover, PCPP exhibited significant antioxidant activity and could significantly reduce the damage of AML-12 cells under IR. Animal experiment results showed that PCPP could effectively reduce IR-induced oxidative damage of spleens and livers in mice, and alleviate the damage to the hematopoietic system. Furthermore, PCPP could greatly increase the activity of superoxide dismutase (SOD) and the content of glutathione (GSH) in serum, livers and spleens of 60Co-γ induced mice, and correspondingly reduce the accumulation of malondialdehyde (MDA), along with the prominent reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and livers in mice. Above results comprehensively indicated that PCPP exerted significant antioxidant activity and could effectively reduce the 60Co-γ induced damage in vitro and in vivo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
期刊最新文献
Radioprotective effects of polysaccharides from Poria cocos peels against 60Co-γ induced oxidative damage in vitro and in vivo Dual-immunomodulatory effects on RAW264.7 macrophages and structural elucidation of a polysaccharide isolated from fermentation broth of Paecilomyces hepiali Egg freshness during storage: the effect of laying hen age and shelf life prediction using a novel hybrid modeling method Regulating the PI3K and AMPK pathway: the secret of 1-deoxynojirimycin's success in alleviating chronic diseases Advances in plant-based raw materials for food 3D printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1