Shell-shaped Ni3S2/NiMoP2 hetero-structure electrocatalyst for efficient water-urea electrolysis at high current density

Q3 Energy 燃料化学学报 Pub Date : 2025-01-01 DOI:10.1016/S1872-5813(24)60476-7
Jiayi WANG , Shaojun QING , Xili TONG , Tin XIANG , Kun ZHANG , Liangji XU
{"title":"Shell-shaped Ni3S2/NiMoP2 hetero-structure electrocatalyst for efficient water-urea electrolysis at high current density","authors":"Jiayi WANG ,&nbsp;Shaojun QING ,&nbsp;Xili TONG ,&nbsp;Tin XIANG ,&nbsp;Kun ZHANG ,&nbsp;Liangji XU","doi":"10.1016/S1872-5813(24)60476-7","DOIUrl":null,"url":null,"abstract":"<div><div>Water-urea electrolysis represents a promising avenue for nitrogen removal and efficient green hydrogen production from ammonia nitrogen wastewater. However, a key challenge, viz., the lack of bifunctional electrocatalysts with exceptional activity and long-term current stability toward hydrogen evolution reaction (HER) and urea oxidation reaction (UOR), lies in this avenue. In this regard, a shell-shaped Ni<sub>3</sub>S<sub>2</sub>/NiMoP<sub>2</sub> heterostructure was constructed on nickel foam (NF) by a hydrothermal method coupled with the gas phase phosphating. Thanks to its laminated heterogeneous nanostructure with abundant oxygen vacancy and efficient electron mass transfer, this catalyst displays excellent activity both in HER and in UOR, with an ultra-low potential of −0.205 and 1.423 V (<em>vs.</em> RHE), respectively, to achieve a large current density of 1000 mA/cm<sup>2</sup>. The dual-electrode water-urea system assembled with the bifunctional Ni<sub>3</sub>S<sub>2</sub>/NiMoP<sub>2</sub> catalyst requires only 1.580 V to achieve a current density of 500 mA/cm<sup>2</sup>, which is 159 mV lower than that in the overall water splitting. Additionally, it exhibits great durability and can operate stably and continuously for up to 100 h under high current conditions.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 1","pages":"Pages 116-127"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Water-urea electrolysis represents a promising avenue for nitrogen removal and efficient green hydrogen production from ammonia nitrogen wastewater. However, a key challenge, viz., the lack of bifunctional electrocatalysts with exceptional activity and long-term current stability toward hydrogen evolution reaction (HER) and urea oxidation reaction (UOR), lies in this avenue. In this regard, a shell-shaped Ni3S2/NiMoP2 heterostructure was constructed on nickel foam (NF) by a hydrothermal method coupled with the gas phase phosphating. Thanks to its laminated heterogeneous nanostructure with abundant oxygen vacancy and efficient electron mass transfer, this catalyst displays excellent activity both in HER and in UOR, with an ultra-low potential of −0.205 and 1.423 V (vs. RHE), respectively, to achieve a large current density of 1000 mA/cm2. The dual-electrode water-urea system assembled with the bifunctional Ni3S2/NiMoP2 catalyst requires only 1.580 V to achieve a current density of 500 mA/cm2, which is 159 mV lower than that in the overall water splitting. Additionally, it exhibits great durability and can operate stably and continuously for up to 100 h under high current conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
期刊最新文献
Advancements in chromium-tolerant air electrode for solid oxide cells: A mini-review Progress of elevated-temperature alkaline electrolysis hydrogen production and alkaline fuel cells power generation Sc-doped strontium iron molybdenum cathode for high-efficiency CO2 electrolysis in solid oxide electrolysis cell A high entropy stabilized perovskite oxide La0.2Pr0.2Sm0.2Gd0.2Sr0.2Co0.8Fe0.2O3−δ as a promising air electrode for reversible solid oxide cells Performance optimization of anodic porous transport layer in proton exchange membrane electrolyzer using multilayer perceptron model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1