Lei Xing , Wenping Gong , Jinsong Huang , Hongbo Zhang , Baoyin Xing , Lei Wang
{"title":"An improved CFD-DEM coupling method for simulating the steady seepage-induced behaviors of soil-rock mixture slopes","authors":"Lei Xing , Wenping Gong , Jinsong Huang , Hongbo Zhang , Baoyin Xing , Lei Wang","doi":"10.1016/j.compgeo.2025.107069","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling the seepage-induced progressive failure of soil-rock mixture (SRM) slopes is challenging because of the large deformation and the complexity of stress-seepage coupling. To address these challenges, this study presents a numerical approach for modeling the seepage-induced progressive failure of SRM slopes, where rock blocks within slopes and the effect of cracks on seepage behavior during slope failure are explicitly considered and modeled. Within the proposed method, the traditional unresolved computational fluid dynamics-discrete element method (CFD-DEM) coupling method is first improved by introducing the unstructured mesh and hydraulic boundary condition to model the seepage-induced progressive failure of SRM slopes. The seepage behavior within SRM slopes is modeled with a CFD solver based on finite volume methods, while the particle motion under these interaction forces is simulated with a DEM solver. Note that fluid-particle interaction forces are calculated with empirical equations in the improved CFD-DEM coupling method. CFD-DEM coupling is achieved by exchanging data between the two solvers at each timestep. The proposed numerical method’s effectiveness is illustrated through two seepage problems (within an SRM sample and an SRM slope) and three model tests with different rock contents (in terms of 10%, 20%, and 30%).</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"180 ","pages":"Article 107069"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000175","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling the seepage-induced progressive failure of soil-rock mixture (SRM) slopes is challenging because of the large deformation and the complexity of stress-seepage coupling. To address these challenges, this study presents a numerical approach for modeling the seepage-induced progressive failure of SRM slopes, where rock blocks within slopes and the effect of cracks on seepage behavior during slope failure are explicitly considered and modeled. Within the proposed method, the traditional unresolved computational fluid dynamics-discrete element method (CFD-DEM) coupling method is first improved by introducing the unstructured mesh and hydraulic boundary condition to model the seepage-induced progressive failure of SRM slopes. The seepage behavior within SRM slopes is modeled with a CFD solver based on finite volume methods, while the particle motion under these interaction forces is simulated with a DEM solver. Note that fluid-particle interaction forces are calculated with empirical equations in the improved CFD-DEM coupling method. CFD-DEM coupling is achieved by exchanging data between the two solvers at each timestep. The proposed numerical method’s effectiveness is illustrated through two seepage problems (within an SRM sample and an SRM slope) and three model tests with different rock contents (in terms of 10%, 20%, and 30%).
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.