{"title":"SPAM: Streamlined Prefetcher-Aware Multi-Threaded Cache Covert-Channel Attack","authors":"E. Kritheesh;Biswabandan Panda","doi":"10.1109/LCA.2025.3529213","DOIUrl":null,"url":null,"abstract":"Last-level cache (LLC) covert-channels exploit the cache timing differences to transmit information. In recent works, the attacks rely on a single sender and a single receiver. Streamline is the state-of-the-art cache covert channel attack that uses a shared array of addresses mapped to the payload bits, allowing parallelization of the encoding and decoding of bits. As multi-core systems are ubiquitous, multiple senders and receivers can be used to create a high bandwidth cache covert channel. However, this is not the case, and the bandwidth per thread is limited by various factors. We extend Streamline to a multi-threaded Streamline, where the senders buffer a few thousand bits at the LLC for the receivers to decode. We observe that these buffered bits are prone to eviction by the co-running processes before they are decoded. We propose SPAM, a multi-threaded covert-channel at the LLC. SPAM shows that fewer but faster senders must encode for more receivers to reduce this time frame. This ensures resilience to noise coming from cache activities of co-running applications. SPAM uses two different access patterns for the sender(s) and the receiver(s). The sender access pattern of the addresses is modified to leverage the hardware prefetchers to accelerate the loads while encoding. The receiver access pattern circumvents the hardware prefetchers for accurate load latency measurements. We demonstrate SPAM on a six-core (12-threaded) system, achieving a bit-rate of 12.21 MB/s at an error rate of 9.02% which is an improvement of over 70% over the state-of-the-art multi-threaded Streamline for comparable error rates when 50% of the co-running threads stress the cache system.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"25-28"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10841844/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Last-level cache (LLC) covert-channels exploit the cache timing differences to transmit information. In recent works, the attacks rely on a single sender and a single receiver. Streamline is the state-of-the-art cache covert channel attack that uses a shared array of addresses mapped to the payload bits, allowing parallelization of the encoding and decoding of bits. As multi-core systems are ubiquitous, multiple senders and receivers can be used to create a high bandwidth cache covert channel. However, this is not the case, and the bandwidth per thread is limited by various factors. We extend Streamline to a multi-threaded Streamline, where the senders buffer a few thousand bits at the LLC for the receivers to decode. We observe that these buffered bits are prone to eviction by the co-running processes before they are decoded. We propose SPAM, a multi-threaded covert-channel at the LLC. SPAM shows that fewer but faster senders must encode for more receivers to reduce this time frame. This ensures resilience to noise coming from cache activities of co-running applications. SPAM uses two different access patterns for the sender(s) and the receiver(s). The sender access pattern of the addresses is modified to leverage the hardware prefetchers to accelerate the loads while encoding. The receiver access pattern circumvents the hardware prefetchers for accurate load latency measurements. We demonstrate SPAM on a six-core (12-threaded) system, achieving a bit-rate of 12.21 MB/s at an error rate of 9.02% which is an improvement of over 70% over the state-of-the-art multi-threaded Streamline for comparable error rates when 50% of the co-running threads stress the cache system.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.