Disturbance Robust Generalized Predictive Control Applied to an EV Charger Grid Converter

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2025-01-03 DOI:10.1109/OJIA.2025.3525771
Jefferson S. Costa;Angelo Lunard;Luís F. Normandia Lourenço;Lucas Rodrigues;Alfeu J. Sguarezi Filho
{"title":"Disturbance Robust Generalized Predictive Control Applied to an EV Charger Grid Converter","authors":"Jefferson S. Costa;Angelo Lunard;Luís F. Normandia Lourenço;Lucas Rodrigues;Alfeu J. Sguarezi Filho","doi":"10.1109/OJIA.2025.3525771","DOIUrl":null,"url":null,"abstract":"Electric vehicles (EVs) are the best solution to tackle the critical challenge of reducing carbon emissions in the transportation sector. However, the widespread adoption of EVs relies on advancing fast-charging infrastructure technology. This includes overcoming challenges related to operating under disturbed conditions, which can impact the stability of the internal control loop. This article presents a method for robustly tuning a generalized predictive control (GPC) for an EV charger grid converter. This approach aims to enhance its performance in the face of disturbances in the grid voltage and internal filter parameters. One significant scientific gap in applying GPC in grid-tied converters concerns systematic tuning. This article addresses this gap by explicitly analyzing the impact of tuning on the stability and robustness of the GPC controller. The concept of robust stability margin, derived from singular value decomposition, is used for this purpose. Experimental results obtained from an EV charger prototype validated the tuning proposal aimed at maximizing the robustness and performance of the grid converter. The tests with different internal filters guaranteed a performance level within the defined error band. Furthermore, experimental tests have shown that the proposed controller is more robust than conventional MPC.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"69-78"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824861","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10824861/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicles (EVs) are the best solution to tackle the critical challenge of reducing carbon emissions in the transportation sector. However, the widespread adoption of EVs relies on advancing fast-charging infrastructure technology. This includes overcoming challenges related to operating under disturbed conditions, which can impact the stability of the internal control loop. This article presents a method for robustly tuning a generalized predictive control (GPC) for an EV charger grid converter. This approach aims to enhance its performance in the face of disturbances in the grid voltage and internal filter parameters. One significant scientific gap in applying GPC in grid-tied converters concerns systematic tuning. This article addresses this gap by explicitly analyzing the impact of tuning on the stability and robustness of the GPC controller. The concept of robust stability margin, derived from singular value decomposition, is used for this purpose. Experimental results obtained from an EV charger prototype validated the tuning proposal aimed at maximizing the robustness and performance of the grid converter. The tests with different internal filters guaranteed a performance level within the defined error band. Furthermore, experimental tests have shown that the proposed controller is more robust than conventional MPC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
IEEE Industry Applications Society Information Advanced Online State-of-Health Prediction and Monitoring of Na-Ion Battery for Electric Vehicles Application A Continuous Sliding Mode Current Control Based on the Sensitivity Theory for PMSM Drives Disturbance Robust Generalized Predictive Control Applied to an EV Charger Grid Converter Cooperative UAV Scheduling for Power Grid Deicing Using Fuzzy Learning and Evolutionary Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1