Test-Time Adaptation via Orthogonal Meta-Learning for Medical Imaging

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-17 DOI:10.1109/TRPMS.2024.3462542
Zhiwen Wang;Zexin Lu;Tao Wang;Ziyuan Yang;Hui Yu;Zhongxian Wang;Yinyu Chen;Jingfeng Lu;Yi Zhang
{"title":"Test-Time Adaptation via Orthogonal Meta-Learning for Medical Imaging","authors":"Zhiwen Wang;Zexin Lu;Tao Wang;Ziyuan Yang;Hui Yu;Zhongxian Wang;Yinyu Chen;Jingfeng Lu;Yi Zhang","doi":"10.1109/TRPMS.2024.3462542","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) models, which have significantly promoted medical imaging, typically assume that training and testing data come from the same domain and distribution. However, these models struggle with unseen testing variations, like different imaging scanners or protocols, leading to suboptimal results from distribution mismatches between training and testing data. Despite extensive research, the issue of distribution mismatch in DL-based medical imaging has been largely overlooked in current literature. To improve the performance with mismatched testing data, this article proposes an orthogonal meta-learning (OML) framework for test-time adaptation (TTA) in medical imaging. Specifically, during training, we develop supervised meta-training reconstruction tasks to guide the self-supervised meta-testing task. Additionally, we introduce an orthogonal learning strategy to enforce orthogonality of pretrained parameters during training, which accelerates convergence during TTA and enhances performance. During the testing stage, the fine-tuned meta-learned parameters effectively reconstruct new, unseen testing data. Extensive experiments on magnetic resonance imaging and computed tomography datasets were conducted to validate our method’s effectiveness against other state-of-the-art methods, including supervised ones, in various mismatch scenarios.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"215-227"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681615/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning (DL) models, which have significantly promoted medical imaging, typically assume that training and testing data come from the same domain and distribution. However, these models struggle with unseen testing variations, like different imaging scanners or protocols, leading to suboptimal results from distribution mismatches between training and testing data. Despite extensive research, the issue of distribution mismatch in DL-based medical imaging has been largely overlooked in current literature. To improve the performance with mismatched testing data, this article proposes an orthogonal meta-learning (OML) framework for test-time adaptation (TTA) in medical imaging. Specifically, during training, we develop supervised meta-training reconstruction tasks to guide the self-supervised meta-testing task. Additionally, we introduce an orthogonal learning strategy to enforce orthogonality of pretrained parameters during training, which accelerates convergence during TTA and enhances performance. During the testing stage, the fine-tuned meta-learned parameters effectively reconstruct new, unseen testing data. Extensive experiments on magnetic resonance imaging and computed tomography datasets were conducted to validate our method’s effectiveness against other state-of-the-art methods, including supervised ones, in various mismatch scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis.
IF 2.4 4区 生物学Molecular BiotechnologyPub Date : 2024-07-01 DOI: 10.1007/s12033-023-00790-3
Wenjing Zhang, Chun Wei, Ling Wang
Identification of KEY lncRNAs and mRNAs Associated with Oral Squamous Cell Carcinoma Progression
IF 4 3区 生物学Current BioinformaticsPub Date : 2020-07-29 DOI: 10.2174/1573411016999200729125745
Yong Mi, Na Li, Qing Li, Yangu Shi, Congcong Zhang, Ju Li
Identification of key lncRNAs and mRNAs related intramuscular fat in pigs by WGCNA
IF 0 Research Square (Research Square)Pub Date : 2023-08-25 DOI: 10.21203/rs.3.rs-3268249/v1
Wenqiang Li, Suozhou Yang, Huixin Liu, Zhi Cao, Fei Xu, Chao Ning, Qin Zhang, Dan Wang, Hui Tang
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Table of Contents Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1