Faraday Rotation Measurements in High-Energy-Density Plasmas Using Shaped Laser Beams

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2024-12-30 DOI:10.1109/TPS.2024.3519036
P.-A. Gourdain;A. Bachmann;I. N. Erez;F. Garrett;J. Hraki;S. McGaffigan;I. West-Abdallah;J. R. Young
{"title":"Faraday Rotation Measurements in High-Energy-Density Plasmas Using Shaped Laser Beams","authors":"P.-A. Gourdain;A. Bachmann;I. N. Erez;F. Garrett;J. Hraki;S. McGaffigan;I. West-Abdallah;J. R. Young","doi":"10.1109/TPS.2024.3519036","DOIUrl":null,"url":null,"abstract":"Magnetic fields play an important role in plasma dynamics, yet it is a quantity difficult to measure accurately with physical probes, whose presence disturbs the very field they measure. The Faraday rotation (FR) of a polarized beam of light provides a mechanism to measure the magnetic field without disturbing the dynamics and has been used with great success in astrophysics and high-energy-density plasma science, where physical probes cannot be used. However, the rotation is typically small, which degrades the accuracy of the measurement. Since polarization cannot be measured directly, detectors rely on a polarizer to measure a small change in beam intensity instead. In this work, we show how beam shaping can improve FR measurements using an optical derivative setup. Since the rotation measurement is now strictly proportional to the beam shape and intensity, the system allows to improve the measurement accuracy simply by increasing the laser beam power.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 12","pages":"5608-5614"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10818397/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic fields play an important role in plasma dynamics, yet it is a quantity difficult to measure accurately with physical probes, whose presence disturbs the very field they measure. The Faraday rotation (FR) of a polarized beam of light provides a mechanism to measure the magnetic field without disturbing the dynamics and has been used with great success in astrophysics and high-energy-density plasma science, where physical probes cannot be used. However, the rotation is typically small, which degrades the accuracy of the measurement. Since polarization cannot be measured directly, detectors rely on a polarizer to measure a small change in beam intensity instead. In this work, we show how beam shaping can improve FR measurements using an optical derivative setup. Since the rotation measurement is now strictly proportional to the beam shape and intensity, the system allows to improve the measurement accuracy simply by increasing the laser beam power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用异形激光束测量高能量密度等离子体中的法拉第旋转
磁场在等离子体动力学中起着重要的作用,但它是一个难以用物理探针精确测量的量,它的存在会干扰它们所测量的场。偏振光束的法拉第旋转(FR)提供了一种在不干扰动力学的情况下测量磁场的机制,并已在天体物理学和高能量密度等离子体科学中取得了巨大成功,这些领域无法使用物理探测器。然而,旋转通常很小,这降低了测量的准确性。由于偏振不能直接测量,探测器依靠偏振器来测量光束强度的微小变化。在这项工作中,我们展示了光束整形如何使用光学导数设置来改善FR测量。由于旋转测量现在严格与光束形状和强度成正比,该系统允许通过增加激光束功率来提高测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
IEEE Transactions on Plasma Science information for authors Introducing IEEE Collabratec Special Issue on the 40th PSSI National Symposium on Plasma Science and Technology (PLASMA 2025) Corrections to “Investigation Into Increase Process of High-Power Microwave With S Curve” IEEE Transactions on Plasma Science Special Issue on Discharges and Electrical Insulation in Vacuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1