Analysis of Back-Gate Bias Control on EVM Measurements of a Dual-Band Power Amplifier in 22 nm FD-SOI for 5G 28 and 39 GHz Applications

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-11-22 DOI:10.1109/TCSI.2024.3487636
Lucas Nyssens;M. Nabet;M. Rack;Y. Bendou;S. Wane;J. B. Sombrin;J.-P. Raskin;D. Lederer
{"title":"Analysis of Back-Gate Bias Control on EVM Measurements of a Dual-Band Power Amplifier in 22 nm FD-SOI for 5G 28 and 39 GHz Applications","authors":"Lucas Nyssens;M. Nabet;M. Rack;Y. Bendou;S. Wane;J. B. Sombrin;J.-P. Raskin;D. Lederer","doi":"10.1109/TCSI.2024.3487636","DOIUrl":null,"url":null,"abstract":"This paper presents a dual-band power amplifier (PA) covering the 5G n257 to n260 frequency 2 bands (24.25 to 29.5 GHz and 37 to 43.5 GHz), fabricated in the 22 nm fully-depleted silicon-on-insulator (FD-SOI) CMOS technology. Its design is based on a distributed balun at the output that efficiently performs a wideband load impedance transformation. The back-gate terminal of each transistor is connected to different pads for detailed back-gate bias variation analysis. Under 5G new radio (NR) modulated signal measurements, we show how the average output power and efficiency can be optimized by varying the back-gate bias, which optimal value depends on (i) the signal bandwidth, (ii) the carrier frequency and (iii) the target error-vector-magnitude (EVM) value. To the best of the authors’ knowledge, the impact of back-gate bias control on the system-level EVM figure of merit is shown for the first time in this work. Overall, with 7.5 dBm and 7.3% mean output power and efficiency, respectively, at 27 GHz, 6 dBm and 5% at 40 GHz, for a 800 MHz bandwidth 5G NR signal, the presented PA shows outstanding performance among wideband/multiband FD-SOI-based PAs covering the 28 and 39 GHz bands, featuring comparable performance to best-in-class narrowband PA designs in FD-SOI technology.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 2","pages":"753-762"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10765124/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a dual-band power amplifier (PA) covering the 5G n257 to n260 frequency 2 bands (24.25 to 29.5 GHz and 37 to 43.5 GHz), fabricated in the 22 nm fully-depleted silicon-on-insulator (FD-SOI) CMOS technology. Its design is based on a distributed balun at the output that efficiently performs a wideband load impedance transformation. The back-gate terminal of each transistor is connected to different pads for detailed back-gate bias variation analysis. Under 5G new radio (NR) modulated signal measurements, we show how the average output power and efficiency can be optimized by varying the back-gate bias, which optimal value depends on (i) the signal bandwidth, (ii) the carrier frequency and (iii) the target error-vector-magnitude (EVM) value. To the best of the authors’ knowledge, the impact of back-gate bias control on the system-level EVM figure of merit is shown for the first time in this work. Overall, with 7.5 dBm and 7.3% mean output power and efficiency, respectively, at 27 GHz, 6 dBm and 5% at 40 GHz, for a 800 MHz bandwidth 5G NR signal, the presented PA shows outstanding performance among wideband/multiband FD-SOI-based PAs covering the 28 and 39 GHz bands, featuring comparable performance to best-in-class narrowband PA designs in FD-SOI technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Circuits and Systems Society Information IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors IEEE Transactions on Circuits and Systems--I: Regular Papers Publication Information Guest Editorial Special Issue on Emerging Hardware Security and Trust Technologies—AsianHOST 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1