SADIMM: Accelerating $\underline{\text{S}}$S―parse $\underline{\text{A}}$A―ttention Using $\underline{\text{DIMM}}$DIMM―-Based Near-Memory Processing

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-11-15 DOI:10.1109/TC.2024.3500362
Huize Li;Dan Chen;Tulika Mitra
{"title":"SADIMM: Accelerating $\\underline{\\text{S}}$S―parse $\\underline{\\text{A}}$A―ttention Using $\\underline{\\text{DIMM}}$DIMM―-Based Near-Memory Processing","authors":"Huize Li;Dan Chen;Tulika Mitra","doi":"10.1109/TC.2024.3500362","DOIUrl":null,"url":null,"abstract":"Self-attention mechanism is the performance bottleneck of Transformer based language models. In response, researchers have proposed sparse attention to expedite Transformer execution. However, sparse attention involves massive random access, rendering it as a memory-intensive kernel. Memory-based architectures, such as <i>near-memory processing</i> (NMP), demonstrate notable performance enhancements in memory-intensive applications. Nonetheless, existing NMP-based sparse attention accelerators face suboptimal performance due to hardware and software challenges. On the hardware front, current solutions employ homogeneous logic integration, struggling to support the diverse operations in sparse attention. On the software side, token-based dataflow is commonly adopted, leading to load imbalance after the pruning of weakly connected tokens. To address these challenges, this paper introduces SADIMM, a hardware-software co-designed NMP-based sparse attention accelerator. In hardware, we propose a heterogeneous integration approach to efficiently support various operations within the attention mechanism. This involves employing different logic units for different operations, thereby improving hardware efficiency. In software, we implement a dimension-based dataflow, dividing input sequences by model dimensions. This approach achieves load balancing after the pruning of weakly connected tokens. Compared to NVIDIA RTX A6000 GPU, the experimental results on BERT, BART, and GPT-2 models demonstrate that SADIMM achieves 48<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula>, 35<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula>, 37<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula> speedups and 194<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula>, 202<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula>, 191<inline-formula><tex-math>$\\boldsymbol{\\times}$</tex-math></inline-formula> energy efficiency improvement, respectively.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 2","pages":"542-554"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755033/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-attention mechanism is the performance bottleneck of Transformer based language models. In response, researchers have proposed sparse attention to expedite Transformer execution. However, sparse attention involves massive random access, rendering it as a memory-intensive kernel. Memory-based architectures, such as near-memory processing (NMP), demonstrate notable performance enhancements in memory-intensive applications. Nonetheless, existing NMP-based sparse attention accelerators face suboptimal performance due to hardware and software challenges. On the hardware front, current solutions employ homogeneous logic integration, struggling to support the diverse operations in sparse attention. On the software side, token-based dataflow is commonly adopted, leading to load imbalance after the pruning of weakly connected tokens. To address these challenges, this paper introduces SADIMM, a hardware-software co-designed NMP-based sparse attention accelerator. In hardware, we propose a heterogeneous integration approach to efficiently support various operations within the attention mechanism. This involves employing different logic units for different operations, thereby improving hardware efficiency. In software, we implement a dimension-based dataflow, dividing input sequences by model dimensions. This approach achieves load balancing after the pruning of weakly connected tokens. Compared to NVIDIA RTX A6000 GPU, the experimental results on BERT, BART, and GPT-2 models demonstrate that SADIMM achieves 48$\boldsymbol{\times}$, 35$\boldsymbol{\times}$, 37$\boldsymbol{\times}$ speedups and 194$\boldsymbol{\times}$, 202$\boldsymbol{\times}$, 191$\boldsymbol{\times}$ energy efficiency improvement, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
Optimizing Structured-Sparse Matrix Multiplication in RISC-V Vector Processors 2024 Reviewers List SLOpt: Serving Real-Time Inference Pipeline With Strict Latency Constraint NetCRC-NR: In-Network 5G NR CRC Accelerator Karatsuba Matrix Multiplication and Its Efficient Custom Hardware Implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1