Optimizing Structured-Sparse Matrix Multiplication in RISC-V Vector Processors

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2025-01-24 DOI:10.1109/TC.2025.3533083
Vasileios Titopoulos;Kosmas Alexandridis;Christodoulos Peltekis;Chrysostomos Nicopoulos;Giorgos Dimitrakopoulos
{"title":"Optimizing Structured-Sparse Matrix Multiplication in RISC-V Vector Processors","authors":"Vasileios Titopoulos;Kosmas Alexandridis;Christodoulos Peltekis;Chrysostomos Nicopoulos;Giorgos Dimitrakopoulos","doi":"10.1109/TC.2025.3533083","DOIUrl":null,"url":null,"abstract":"Structured sparsity has been proposed as an efficient way to prune the complexity of Machine Learning (ML) applications and to simplify the handling of sparse data in hardware. Accelerating ML models, whether for training, or inference, heavily relies on matrix multiplications that can be efficiently executed on vector processors, or custom matrix engines. This work aims to integrate the simplicity of structured sparsity into vector execution to speed up the corresponding matrix multiplications. Initially, the implementation of structured-sparse matrix multiplication using the current RISC-V instruction set vector extension is comprehensively explored. Critical parameters that affect performance, such as the impact of data distribution across the scalar and vector register files, data locality, and the effectiveness of loop unrolling are analyzed both qualitatively and quantitatively. Furthermore, it is demonstrated that the addition of a single new instruction would reap even higher performance. The newly proposed instruction is called <monospace>vindexmac</monospace>, i.e., vector index-multiply-accumulate. It allows for indirect reads from the vector register file and it reduces the number of instructions executed per matrix multiplication iteration, without introducing additional dependencies that would limit loop unrolling. The proposed new instruction was integrated in a decoupled RISC-V vector processor with negligible hardware cost. Experimental results demonstrate the runtime efficiency and the scalability offered by the introduced optimizations and the new instruction for the execution of state-of-the-art Convolutional Neural Networks. More particularly, the addition of a custom instruction improves runtime by 25% and 33%, when compared with highly-optimized vectorized kernels that use only the currently defined RISC-V instructions.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 4","pages":"1446-1460"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10852517/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Structured sparsity has been proposed as an efficient way to prune the complexity of Machine Learning (ML) applications and to simplify the handling of sparse data in hardware. Accelerating ML models, whether for training, or inference, heavily relies on matrix multiplications that can be efficiently executed on vector processors, or custom matrix engines. This work aims to integrate the simplicity of structured sparsity into vector execution to speed up the corresponding matrix multiplications. Initially, the implementation of structured-sparse matrix multiplication using the current RISC-V instruction set vector extension is comprehensively explored. Critical parameters that affect performance, such as the impact of data distribution across the scalar and vector register files, data locality, and the effectiveness of loop unrolling are analyzed both qualitatively and quantitatively. Furthermore, it is demonstrated that the addition of a single new instruction would reap even higher performance. The newly proposed instruction is called vindexmac, i.e., vector index-multiply-accumulate. It allows for indirect reads from the vector register file and it reduces the number of instructions executed per matrix multiplication iteration, without introducing additional dependencies that would limit loop unrolling. The proposed new instruction was integrated in a decoupled RISC-V vector processor with negligible hardware cost. Experimental results demonstrate the runtime efficiency and the scalability offered by the introduced optimizations and the new instruction for the execution of state-of-the-art Convolutional Neural Networks. More particularly, the addition of a custom instruction improves runtime by 25% and 33%, when compared with highly-optimized vectorized kernels that use only the currently defined RISC-V instructions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
Optimizing Structured-Sparse Matrix Multiplication in RISC-V Vector Processors 2024 Reviewers List SLOpt: Serving Real-Time Inference Pipeline With Strict Latency Constraint NetCRC-NR: In-Network 5G NR CRC Accelerator Karatsuba Matrix Multiplication and Its Efficient Custom Hardware Implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1