Fair Cost Allocation in Energy Communities Under Forecast Uncertainty

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2024-12-19 DOI:10.1109/OAJPE.2024.3520418
Michael Eichelbeck;Matthias Althoff
{"title":"Fair Cost Allocation in Energy Communities Under Forecast Uncertainty","authors":"Michael Eichelbeck;Matthias Althoff","doi":"10.1109/OAJPE.2024.3520418","DOIUrl":null,"url":null,"abstract":"Energy communities (ECs) are an increasingly studied path toward improving prosumer coordination. A central challenge of ECs is to allocate cost savings fairly to members. While many allocation mechanisms have been developed, existing literature does not account for the implications of inaccurate forecasts on the fairness of the allocation. We introduce a set of fairness conditions for imperfect knowledge allocation and show that these conditions constitute a Pareto front. We demonstrate how a well-established allocation scheme, the Shapley value mechanism (SVM), has unfavorable consequences for flexibility-providing community members and generally does not yield solutions on this Pareto front. In contrast, we interpret dispatch cost under imperfect knowledge as being composed of two components. The first represents the cost under perfect knowledge, and the second represents the cost arising from inaccurate forecasts. Our proposed mechanism extends an SVM-based allocation of the perfect knowledge cost by allocating the remaining cost in a way that guarantees finding solutions on the Pareto front. To this end, we formulate a convex multi-objective optimization problem that can efficiently be solved as a linear or quadratic program.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"2-11"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10807294","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10807294/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Energy communities (ECs) are an increasingly studied path toward improving prosumer coordination. A central challenge of ECs is to allocate cost savings fairly to members. While many allocation mechanisms have been developed, existing literature does not account for the implications of inaccurate forecasts on the fairness of the allocation. We introduce a set of fairness conditions for imperfect knowledge allocation and show that these conditions constitute a Pareto front. We demonstrate how a well-established allocation scheme, the Shapley value mechanism (SVM), has unfavorable consequences for flexibility-providing community members and generally does not yield solutions on this Pareto front. In contrast, we interpret dispatch cost under imperfect knowledge as being composed of two components. The first represents the cost under perfect knowledge, and the second represents the cost arising from inaccurate forecasts. Our proposed mechanism extends an SVM-based allocation of the perfect knowledge cost by allocating the remaining cost in a way that guarantees finding solutions on the Pareto front. To this end, we formulate a convex multi-objective optimization problem that can efficiently be solved as a linear or quadratic program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
Coherency-Constrained Spectral Clustering for Power Network Reduction Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning Information for authors Synergistic Meta-Heuristic Adaptive Real-Time Power System Stabilizer (SMART-PSS) IEEE Open Access Journal of Power and Energy Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1