INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Signal Processing Pub Date : 2024-09-09 DOI:10.1109/JSTSP.2024.3454957
Di You;Pier Luigi Dragotti
{"title":"INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration","authors":"Di You;Pier Luigi Dragotti","doi":"10.1109/JSTSP.2024.3454957","DOIUrl":null,"url":null,"abstract":"Generative diffusion models are becoming one of the most popular prior in image restoration (IR) tasks due to their remarkable ability to generate realistic natural images. Despite achieving satisfactory results, IR methods based on diffusion models present several limitations. First of all, most non-blind approaches require an analytical expression of the degradation model to guide the sampling process. Secondly, most existing blind approaches rely on families of pre-defined degradation models for training their deep networks. The above issues limit the flexibility of these approaches and so their ability to handle real-world degradation tasks. In this paper, we propose a novel INN-guided probabilistic diffusion algorithm for non-blind and blind image restoration, namely INDIGO and BlindINDIGO, which combines the merits of the perfect reconstruction property of invertible neural networks (INN) with the strong generative capabilities of pre-trained diffusion models. Specifically, we train the forward process of the INN to simulate an arbitrary degradation process and use the inverse to obtain an intermediate image that we use to guide the reverse diffusion sampling process through a gradient step. We also introduce an initialization strategy, to further improve the performance and inference speed of our algorithm. Experiments demonstrate that our algorithm obtains competitive results compared with recently leading methods both quantitatively and visually on synthetic and real-world low-quality images.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 6","pages":"1108-1122"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670023/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Generative diffusion models are becoming one of the most popular prior in image restoration (IR) tasks due to their remarkable ability to generate realistic natural images. Despite achieving satisfactory results, IR methods based on diffusion models present several limitations. First of all, most non-blind approaches require an analytical expression of the degradation model to guide the sampling process. Secondly, most existing blind approaches rely on families of pre-defined degradation models for training their deep networks. The above issues limit the flexibility of these approaches and so their ability to handle real-world degradation tasks. In this paper, we propose a novel INN-guided probabilistic diffusion algorithm for non-blind and blind image restoration, namely INDIGO and BlindINDIGO, which combines the merits of the perfect reconstruction property of invertible neural networks (INN) with the strong generative capabilities of pre-trained diffusion models. Specifically, we train the forward process of the INN to simulate an arbitrary degradation process and use the inverse to obtain an intermediate image that we use to guide the reverse diffusion sampling process through a gradient step. We also introduce an initialization strategy, to further improve the performance and inference speed of our algorithm. Experiments demonstrate that our algorithm obtains competitive results compared with recently leading methods both quantitatively and visually on synthetic and real-world low-quality images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
期刊最新文献
Table of Contents Front Cover IEEE Signal Processing Society Publication Information IEEE Signal Processing Society Information 2024 Index IEEE Journal of Selected Topics in Signal Processing Vol. 18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1