A Survey of Human-Object Interaction Detection With Deep Learning

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-12-26 DOI:10.1109/TETCI.2024.3518613
Geng Han;Jiachen Zhao;Lele Zhang;Fang Deng
{"title":"A Survey of Human-Object Interaction Detection With Deep Learning","authors":"Geng Han;Jiachen Zhao;Lele Zhang;Fang Deng","doi":"10.1109/TETCI.2024.3518613","DOIUrl":null,"url":null,"abstract":"Human-object interaction (HOI) detection has attracted significant attention due to its wide applications, including human-robot interactions, security monitoring, automatic sports commentary, etc. HOI detection aims to detect humans, objects, and their interactions in a given image or video, so it needs a higher-level semantic understanding of the image than regular object recognition or detection tasks. It is also more challenging technically because of some unique difficulties, such as multi-object interactions, long-tail distribution of interaction categories, etc. Currently, deep learning methods have achieved great performance in HOI detection, but there are few reviews describing the recent advance of deep learning-based HOI detection. Moreover, the current stage-based category of HOI detection methods is causing confusion in community discussion and beginner learning. To fill this gap, this paper summarizes, categorizes, and compares methods using deep learning for HOI detection over the last nine years. Firstly, we summarize the pipeline of HOI detection methods. Then, we divide existing methods into three categories (two-stage, one-stage, and transformer-based), distinguish them in formulas and schematics, and qualitatively compare their advantages and disadvantages. After that, we review each category of methods in detail, focusing on HOI detection methods for images. Moreover, we explore the development process of using foundation models for HOI detection. We also quantitatively compare the performance of existing methods on public HOI datasets. At last, we point out the future research direction of HOI detection.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"3-26"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816567/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human-object interaction (HOI) detection has attracted significant attention due to its wide applications, including human-robot interactions, security monitoring, automatic sports commentary, etc. HOI detection aims to detect humans, objects, and their interactions in a given image or video, so it needs a higher-level semantic understanding of the image than regular object recognition or detection tasks. It is also more challenging technically because of some unique difficulties, such as multi-object interactions, long-tail distribution of interaction categories, etc. Currently, deep learning methods have achieved great performance in HOI detection, but there are few reviews describing the recent advance of deep learning-based HOI detection. Moreover, the current stage-based category of HOI detection methods is causing confusion in community discussion and beginner learning. To fill this gap, this paper summarizes, categorizes, and compares methods using deep learning for HOI detection over the last nine years. Firstly, we summarize the pipeline of HOI detection methods. Then, we divide existing methods into three categories (two-stage, one-stage, and transformer-based), distinguish them in formulas and schematics, and qualitatively compare their advantages and disadvantages. After that, we review each category of methods in detail, focusing on HOI detection methods for images. Moreover, we explore the development process of using foundation models for HOI detection. We also quantitatively compare the performance of existing methods on public HOI datasets. At last, we point out the future research direction of HOI detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Computational Intelligence Society Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors ESAI: Efficient Split Artificial Intelligence via Early Exiting Using Neural Architecture Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1