SR-ABR: Super Resolution Integrated ABR Algorithm for Cloud-Based Video Streaming

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-08-28 DOI:10.1109/TETCI.2024.3446449
Haiqiao Wu;Dapeng Oliver Wu;Peng Gong
{"title":"SR-ABR: Super Resolution Integrated ABR Algorithm for Cloud-Based Video Streaming","authors":"Haiqiao Wu;Dapeng Oliver Wu;Peng Gong","doi":"10.1109/TETCI.2024.3446449","DOIUrl":null,"url":null,"abstract":"Super-resolution is a promising solution to improve the quality of experience (QoE) for cloud-based video streaming when the network resources between clients and the cloud vendors become scarce. Specifically, the received video can be enhanced with a trained super-resolution model running on the client-side. However, all the existing solutions ignore the content-induced performance variability of Super-Resolution Deep Neural Network (SR-DNN) models, which means the same super-resolution models have different enhancement effects on the different parts of videos because of video content variation. That leads to unreasonable bitrate selection, resulting in low video QoE, e.g., low bitrate, rebuffering, or video quality jitters. Thus, in this paper, we propose SR-ABR, a super-resolution integrated adaptive bitrate (ABR) algorithm, which considers the content-induced performance variability of SR-DNNs into the bitrate decision process. Due to complex network conditions and video content, SR-ABR adopts deep reinforcement learning (DRL) to select future bitrate for adapting to a wide range of environments. Moreover, to utilize the content-induced performance variability of SR-DNNs efficiently, we first define the performance variability of SR-DNNs over different video content, and then use a 2D convolution kernel to distill the features of the performance variability of the SR-DNNs to a short future video segment (several chunks) as part of the inputs. We compare SR-ABR with the related state-of-the-art works using trace-driven simulation under various real-world traces. The experiments show that SR-ABR outperforms the best state-of-the-art work NAS with the gain in average QoE of 4.3%–46.2% and 18.9%–42.1% under FCC and 3G/HSDPA network traces, respectively.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"87-98"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654461/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution is a promising solution to improve the quality of experience (QoE) for cloud-based video streaming when the network resources between clients and the cloud vendors become scarce. Specifically, the received video can be enhanced with a trained super-resolution model running on the client-side. However, all the existing solutions ignore the content-induced performance variability of Super-Resolution Deep Neural Network (SR-DNN) models, which means the same super-resolution models have different enhancement effects on the different parts of videos because of video content variation. That leads to unreasonable bitrate selection, resulting in low video QoE, e.g., low bitrate, rebuffering, or video quality jitters. Thus, in this paper, we propose SR-ABR, a super-resolution integrated adaptive bitrate (ABR) algorithm, which considers the content-induced performance variability of SR-DNNs into the bitrate decision process. Due to complex network conditions and video content, SR-ABR adopts deep reinforcement learning (DRL) to select future bitrate for adapting to a wide range of environments. Moreover, to utilize the content-induced performance variability of SR-DNNs efficiently, we first define the performance variability of SR-DNNs over different video content, and then use a 2D convolution kernel to distill the features of the performance variability of the SR-DNNs to a short future video segment (several chunks) as part of the inputs. We compare SR-ABR with the related state-of-the-art works using trace-driven simulation under various real-world traces. The experiments show that SR-ABR outperforms the best state-of-the-art work NAS with the gain in average QoE of 4.3%–46.2% and 18.9%–42.1% under FCC and 3G/HSDPA network traces, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Computational Intelligence Society Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors ESAI: Efficient Split Artificial Intelligence via Early Exiting Using Neural Architecture Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1