A Deep Reinforcement Learning-Based Adaptive Large Neighborhood Search for Capacitated Electric Vehicle Routing Problems

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-08-30 DOI:10.1109/TETCI.2024.3444698
Chao Wang;Mengmeng Cao;Hao Jiang;Xiaoshu Xiang;Xingyi Zhang
{"title":"A Deep Reinforcement Learning-Based Adaptive Large Neighborhood Search for Capacitated Electric Vehicle Routing Problems","authors":"Chao Wang;Mengmeng Cao;Hao Jiang;Xiaoshu Xiang;Xingyi Zhang","doi":"10.1109/TETCI.2024.3444698","DOIUrl":null,"url":null,"abstract":"The Capacitated Electric Vehicle Routing Problem (CEVRP) poses a novel challenge within the field of vehicle routing optimization, as it requires consideration of both customer service requirements and electric vehicle recharging schedules. In addressing the CEVRP, Adaptive Large Neighborhood Search (ALNS) has garnered widespread acclaim due to its remarkable adaptability and versatility. However, the original ALNS, using a weight-based scoring method, relies solely on the past performances of operators to determine their weights, thereby failing to capture crucial information about the ongoing search process. Moreover, it often employs a fixed single charging strategy for the CEVRP, neglecting the potential impact of alternative charging strategies on solution improvement. Therefore, this study treats the selection of operators as a Markov Decision Process and introduces a novel approach based on Deep Reinforcement Learning (DRL) for operator selection. This approach enables adaptive selection of both destroy and repair operators, alongside charging strategies, based on the current state of the search process. More specifically, a state extraction method is devised to extract features not only from the problem itself but also from the solutions generated during the iterative process. Additionally, a novel reward function is designed to guide the DRL network in selecting an appropriate operator portfolio for the CEVRP. Experimental results demonstrate that the proposed algorithm excels in instances with fewer than 100 customers, achieving the best values in 7 out of 8 test instances. It also maintains competitive performance in instances with over 100 customers and requires less time compared to population-based methods.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"131-144"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10660531/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Capacitated Electric Vehicle Routing Problem (CEVRP) poses a novel challenge within the field of vehicle routing optimization, as it requires consideration of both customer service requirements and electric vehicle recharging schedules. In addressing the CEVRP, Adaptive Large Neighborhood Search (ALNS) has garnered widespread acclaim due to its remarkable adaptability and versatility. However, the original ALNS, using a weight-based scoring method, relies solely on the past performances of operators to determine their weights, thereby failing to capture crucial information about the ongoing search process. Moreover, it often employs a fixed single charging strategy for the CEVRP, neglecting the potential impact of alternative charging strategies on solution improvement. Therefore, this study treats the selection of operators as a Markov Decision Process and introduces a novel approach based on Deep Reinforcement Learning (DRL) for operator selection. This approach enables adaptive selection of both destroy and repair operators, alongside charging strategies, based on the current state of the search process. More specifically, a state extraction method is devised to extract features not only from the problem itself but also from the solutions generated during the iterative process. Additionally, a novel reward function is designed to guide the DRL network in selecting an appropriate operator portfolio for the CEVRP. Experimental results demonstrate that the proposed algorithm excels in instances with fewer than 100 customers, achieving the best values in 7 out of 8 test instances. It also maintains competitive performance in instances with over 100 customers and requires less time compared to population-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Computational Intelligence Society Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors ESAI: Efficient Split Artificial Intelligence via Early Exiting Using Neural Architecture Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1