{"title":"Multiphysics Modeling for Thermal Interruption Capability Evaluation in 72.5 kV GCB Adopting CO₂/O₂ Mixture Gas","authors":"Hyun-Mo Ahn;Jun-Kyu Park;Hyun-Jae Jang;Ki-Dong Song;Sung-Chin Hahn;Yeon-Ho Oh","doi":"10.1109/TMAG.2024.3511701","DOIUrl":null,"url":null,"abstract":"The increasing concerns surrounding global warming and its adverse effects have contributed to the rising demand for SF6-free eco-friendly gas circuit breakers (GCBs). In particular, CO2/O2 mixtures possess better arc-quenching capabilities than pure CO2, making them suitable insulation gases for eco-friendly GCBs. This study proposes a multiphysics model combining electric, fluid dynamics, and radiation models to evaluate the thermal interruption capability in a 72.5 kV GCB using a CO2/O2 mixture gas. The pressure rise inside the thermal chamber and arc voltage of a prototype gas interrupter adopting a CO2/O2 mixture gas were calculated using the proposed model. The feasibility of the model was verified through a comparison of the calculated pressure rise and arc voltage with the measurement results. Furthermore, we calculated the temperature, pressure, and polytetrafluoroethylene (PTFE) ablation distribution of the 72.5 kV GCB with the CO2/O2 mixture gas. Based on these results, we estimated the thermal interruption capabilities, specifically, the post-arc current (PAC) and G200 indices. The numerical investigation of the thermal interruption capability can contribute to the design of GCB interrupters using CO2/O2 mixture gas.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778661/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing concerns surrounding global warming and its adverse effects have contributed to the rising demand for SF6-free eco-friendly gas circuit breakers (GCBs). In particular, CO2/O2 mixtures possess better arc-quenching capabilities than pure CO2, making them suitable insulation gases for eco-friendly GCBs. This study proposes a multiphysics model combining electric, fluid dynamics, and radiation models to evaluate the thermal interruption capability in a 72.5 kV GCB using a CO2/O2 mixture gas. The pressure rise inside the thermal chamber and arc voltage of a prototype gas interrupter adopting a CO2/O2 mixture gas were calculated using the proposed model. The feasibility of the model was verified through a comparison of the calculated pressure rise and arc voltage with the measurement results. Furthermore, we calculated the temperature, pressure, and polytetrafluoroethylene (PTFE) ablation distribution of the 72.5 kV GCB with the CO2/O2 mixture gas. Based on these results, we estimated the thermal interruption capabilities, specifically, the post-arc current (PAC) and G200 indices. The numerical investigation of the thermal interruption capability can contribute to the design of GCB interrupters using CO2/O2 mixture gas.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.