Transparent Graphene-Based RIS for 6G Communications in the THz Spectrum

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Antennas and Propagation Pub Date : 2024-10-29 DOI:10.1109/OJAP.2024.3487793
I. Marasco;C. Cantore;G. V. Bianco;G. Bruno;A. D'Orazio;G. Magno
{"title":"Transparent Graphene-Based RIS for 6G Communications in the THz Spectrum","authors":"I. Marasco;C. Cantore;G. V. Bianco;G. Bruno;A. D'Orazio;G. Magno","doi":"10.1109/OJAP.2024.3487793","DOIUrl":null,"url":null,"abstract":"In the quest for sixth-generation wireless communication technology (6G), Terahertz waves represent a key technology due to their distinct advantages over microwaves and infrared radiation. Reconfigurable intelligent surfaces (RIS) emerge as a critical technology within this context. This paper presents a numerical investigation and the optimized design of a transparent graphene-based RIS operating in the THz spectrum. The aim of the paper is twofold: the former is to demonstrate the reconfigurability of the proposed RIS by exploiting two methods, referred to as “digital” and “analogical”. The latter is to demonstrate the effects of the losses and of the mutual coupling among unit cells on the power flow pattern. This aspect is crucial in the design of the RIS and cannot be overlooked, differently from other papers reported in the literature which analyze the RIS as an “ideal” structure evaluating only an analytical estimation of the array factor and neglecting the interaction among the unit cells. Our results hold significant promise for improving the development of a new class of smart devices crucial for 6G wireless communication systems.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"193-200"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737393","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737393/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the quest for sixth-generation wireless communication technology (6G), Terahertz waves represent a key technology due to their distinct advantages over microwaves and infrared radiation. Reconfigurable intelligent surfaces (RIS) emerge as a critical technology within this context. This paper presents a numerical investigation and the optimized design of a transparent graphene-based RIS operating in the THz spectrum. The aim of the paper is twofold: the former is to demonstrate the reconfigurability of the proposed RIS by exploiting two methods, referred to as “digital” and “analogical”. The latter is to demonstrate the effects of the losses and of the mutual coupling among unit cells on the power flow pattern. This aspect is crucial in the design of the RIS and cannot be overlooked, differently from other papers reported in the literature which analyze the RIS as an “ideal” structure evaluating only an analytical estimation of the array factor and neglecting the interaction among the unit cells. Our results hold significant promise for improving the development of a new class of smart devices crucial for 6G wireless communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
期刊最新文献
Front Cover Table of Contents IEEE Open Journal of Antennas and Propagation List of Reviewers, Volume 5 IEEE Open Journal of Antennas and Propagation Instructions for authors IEEE ANTENNAS AND PROPAGATION SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1