Shuijia Li;Rui Wang;Wenyin Gong;Zuowen Liao;Ling Wang
{"title":"A Co-Evolutionary Dual Niching Differential Evolution Algorithm for Nonlinear Equation Systems Optimization","authors":"Shuijia Li;Rui Wang;Wenyin Gong;Zuowen Liao;Ling Wang","doi":"10.1109/TETCI.2024.3442867","DOIUrl":null,"url":null,"abstract":"A nonlinear equation system often has multiple roots, while finding all roots simultaneously in one run remains a challenging work in numerical optimization. Although many methods have been proposed to solve the problem, few have utilised two algorithms with different characteristics to improve the root rate. To locate as many roots as possible of nonlinear equation systems, in this paper, a co-evolutionary dual niching differential evolution with information sharing and migration is developed. To be specific, firstly it utilizes a dual niching algorithm namely neighborhood-based crowding/speciation differential evolution co-evolutionary to search concurrently; secondly, a parameter adaptation strategy is employed to ameliorate the capability of the dual algorithm; finally, the dual niching differential evolution adaptively performs information sharing and migration according to the evolutionary experience, thereby balancing the population diversity and convergence. To investigate the performance of the proposed approach, thirty nonlinear equation systems with diverse characteristics and a more complex test set are used as the test suite. A comprehensive comparison shows that the proposed method performs well in terms of root rate and success rate when compared with other advanced algorithms.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"109-118"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680464/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A nonlinear equation system often has multiple roots, while finding all roots simultaneously in one run remains a challenging work in numerical optimization. Although many methods have been proposed to solve the problem, few have utilised two algorithms with different characteristics to improve the root rate. To locate as many roots as possible of nonlinear equation systems, in this paper, a co-evolutionary dual niching differential evolution with information sharing and migration is developed. To be specific, firstly it utilizes a dual niching algorithm namely neighborhood-based crowding/speciation differential evolution co-evolutionary to search concurrently; secondly, a parameter adaptation strategy is employed to ameliorate the capability of the dual algorithm; finally, the dual niching differential evolution adaptively performs information sharing and migration according to the evolutionary experience, thereby balancing the population diversity and convergence. To investigate the performance of the proposed approach, thirty nonlinear equation systems with diverse characteristics and a more complex test set are used as the test suite. A comprehensive comparison shows that the proposed method performs well in terms of root rate and success rate when compared with other advanced algorithms.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.