Panjie Xiang , Kai Sun , Anzai Shi , Jiangzhen An , Xiaolan Chen , Lingbo Qu , Bing Yu
{"title":"Visible-light-induced 1,3-difunctionalization of allylboronic esters enabled by a 1,2-boron shift†","authors":"Panjie Xiang , Kai Sun , Anzai Shi , Jiangzhen An , Xiaolan Chen , Lingbo Qu , Bing Yu","doi":"10.1039/d4gc06330a","DOIUrl":null,"url":null,"abstract":"<div><div>A novel visible-light-induced strategy has been developed for 1,2-boron migration to achieve 1,3-difunctionalization of allylboronic esters using vinyl triflates as bifunctional reagents. This approach demonstrates significant atomic and step economy, allowing for the construction of two C–C bonds and one C–B bond in a single preparative step under mild reaction conditions. This methodology enables the conversion of a wide array of natural products and pharmacologically relevant molecules, achieving satisfactory yields. Furthermore, this protocol is also successfully extended to other bifunctional reagents, such as tosylates and benzenesulfonyl cyanide, affording the corresponding sulfonyl products in good yields. Given the importance of boron and cyano functionalities in organic synthesis, these products hold considerable promise as intermediates for the synthesis of alcohols or amides. A comprehensive investigation of the reaction mechanism was performed, utilizing radical capture experiments, Stern–Volmer fluorescence quenching, cyclic voltammetry, light on–off experiments, and quantum yield measurements to elucidate the underlying processes involved.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 6","pages":"Pages 1820-1827"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000305","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel visible-light-induced strategy has been developed for 1,2-boron migration to achieve 1,3-difunctionalization of allylboronic esters using vinyl triflates as bifunctional reagents. This approach demonstrates significant atomic and step economy, allowing for the construction of two C–C bonds and one C–B bond in a single preparative step under mild reaction conditions. This methodology enables the conversion of a wide array of natural products and pharmacologically relevant molecules, achieving satisfactory yields. Furthermore, this protocol is also successfully extended to other bifunctional reagents, such as tosylates and benzenesulfonyl cyanide, affording the corresponding sulfonyl products in good yields. Given the importance of boron and cyano functionalities in organic synthesis, these products hold considerable promise as intermediates for the synthesis of alcohols or amides. A comprehensive investigation of the reaction mechanism was performed, utilizing radical capture experiments, Stern–Volmer fluorescence quenching, cyclic voltammetry, light on–off experiments, and quantum yield measurements to elucidate the underlying processes involved.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.