Synergistic impact of rice husk biomass derived carbon supports on the performance of biogenic Fe0-catalyzed advanced oxidation processes for oxytetracycline remediation†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-12-26 DOI:10.1039/D4EW00912F
Sandeep Kumar, Parminder Kaur, Jyoti Rani, Janpreet Singh, Sandeep Kaushal, J. Nagendra Babu and Sunil Mittal
{"title":"Synergistic impact of rice husk biomass derived carbon supports on the performance of biogenic Fe0-catalyzed advanced oxidation processes for oxytetracycline remediation†","authors":"Sandeep Kumar, Parminder Kaur, Jyoti Rani, Janpreet Singh, Sandeep Kaushal, J. Nagendra Babu and Sunil Mittal","doi":"10.1039/D4EW00912F","DOIUrl":null,"url":null,"abstract":"<p >This study explores the use of rice husk biomass and its derived carbon materials—hydrochar (HC) and biochar (BC)—as supports for biogenic zerovalent iron (ZVI) nanocomposites (ZVI@RH, ZVI@HC, and ZVI@BC) in advanced oxidation processes (AOPs) for the degradation of oxytetracycline (OTC). The catalysts were characterized using FTIR, XRD, FESEM, and XPS techniques, and their performance in activating peroxymonosulfate (PMS) for OTC degradation was assessed. Results showed that the ZVI@BC nanocomposite outperformed ZVI@RH and ZVI@HC in OTC removal through heterogeneous Fenton-like processes. The addition of PMS further enhanced OTC degradation by generating more reactive oxygen species (ROS), making the process more efficient than the Fenton process alone. The higher surface defects in BC, resulting from pyrolysis, improved OTC adsorption and degradation, and facilitated more effective ZVI-mediated PMS activation in ZVI@BC, achieving nearly 98.3% OTC removal from the aqueous solution. The involvement of various ROS in OTC degradation was examined using radical scavengers, and DFT calculations proposed a degradation pathway by identifying ROS attack sites on the OTC chromophore. High-resolution mass spectrometry (HRMS) analysis was used to identify reaction intermediates. This study emphasizes the potential of using agricultural waste-derived materials in AOPs, presenting a sustainable and cost-effective method for environmental remediation and OTC antibiotic degradation.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 2","pages":" 242-261"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00912f","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of rice husk biomass and its derived carbon materials—hydrochar (HC) and biochar (BC)—as supports for biogenic zerovalent iron (ZVI) nanocomposites (ZVI@RH, ZVI@HC, and ZVI@BC) in advanced oxidation processes (AOPs) for the degradation of oxytetracycline (OTC). The catalysts were characterized using FTIR, XRD, FESEM, and XPS techniques, and their performance in activating peroxymonosulfate (PMS) for OTC degradation was assessed. Results showed that the ZVI@BC nanocomposite outperformed ZVI@RH and ZVI@HC in OTC removal through heterogeneous Fenton-like processes. The addition of PMS further enhanced OTC degradation by generating more reactive oxygen species (ROS), making the process more efficient than the Fenton process alone. The higher surface defects in BC, resulting from pyrolysis, improved OTC adsorption and degradation, and facilitated more effective ZVI-mediated PMS activation in ZVI@BC, achieving nearly 98.3% OTC removal from the aqueous solution. The involvement of various ROS in OTC degradation was examined using radical scavengers, and DFT calculations proposed a degradation pathway by identifying ROS attack sites on the OTC chromophore. High-resolution mass spectrometry (HRMS) analysis was used to identify reaction intermediates. This study emphasizes the potential of using agricultural waste-derived materials in AOPs, presenting a sustainable and cost-effective method for environmental remediation and OTC antibiotic degradation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover Development and evaluation of hydrogen peroxide mediated zinc oxide photocatalytic nanoparticles from Peepal (Ficus Religiosa) leaf extract for the treatment of actual tannery wastewater Celebrating 10 years of Environmental Science: Water Research & Technology Synergistic impact of rice husk biomass derived carbon supports on the performance of biogenic Fe0-catalyzed advanced oxidation processes for oxytetracycline remediation† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1