Turning sewage sludge and medical waste into energy: sustainable process synthesis via surrogate-based superstructure optimization†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2025-01-20 DOI:10.1039/d4gc04628e
Jianzhao Zhou , Jingzheng Ren , Chang He
{"title":"Turning sewage sludge and medical waste into energy: sustainable process synthesis via surrogate-based superstructure optimization†","authors":"Jianzhao Zhou ,&nbsp;Jingzheng Ren ,&nbsp;Chang He","doi":"10.1039/d4gc04628e","DOIUrl":null,"url":null,"abstract":"<div><div>Waste-to-energy (WtE) conversion offers a promising solution for sustainable waste management, but identifying economically viable and environmentally sustainable pathways remains a significant challenge. To address this issue, this study presents an optimal process design for simultaneously converting medical waste and sewage sludge into energy based on a novel superstructure optimization framework. The superstructure integrates waste plasma gasification, CO<sub>2</sub> capture, and fuel production, with economic profit and carbon emissions of each unit quantified through high-fidelity process simulations. To reduce the computational complexity, high dimensional model representation (HDMR)-based surrogate models are developed utilizing simulation data. With a compact surrogate model, efficient mixed-integer nonlinear programming is employed to identify the optimal pathway toward maximizing profit. The results reveal that producing hydrogen is the most economically favorable option, yielding a profit of 228.68 $ per h and carbon emissions of 3.82 t CO<sub>2</sub> equivalent (CO<sub>2</sub>-eq) per h in the case study. Sensitivity analysis shows that increasing the ratio of medical waste enhances economic benefits but also raises carbon emissions. Additionally, the critical role of carbon tax in selecting low-carbon pathways while balancing economic viability is demonstrated. Compared to traditional waste treatment and energy production methods, the identified optimal processes demonstrate superior performance in carbon reduction, with emissions of 1.35 kg CO<sub>2</sub>-eq per kg mixed waste under carbon tax conditions. This research highlights the effectiveness of HDMR surrogating in superstructure optimization and offers valuable insights for sustainable WtE conversion.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 6","pages":"Pages 1777-1788"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc04628e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Waste-to-energy (WtE) conversion offers a promising solution for sustainable waste management, but identifying economically viable and environmentally sustainable pathways remains a significant challenge. To address this issue, this study presents an optimal process design for simultaneously converting medical waste and sewage sludge into energy based on a novel superstructure optimization framework. The superstructure integrates waste plasma gasification, CO2 capture, and fuel production, with economic profit and carbon emissions of each unit quantified through high-fidelity process simulations. To reduce the computational complexity, high dimensional model representation (HDMR)-based surrogate models are developed utilizing simulation data. With a compact surrogate model, efficient mixed-integer nonlinear programming is employed to identify the optimal pathway toward maximizing profit. The results reveal that producing hydrogen is the most economically favorable option, yielding a profit of 228.68 $ per h and carbon emissions of 3.82 t CO2 equivalent (CO2-eq) per h in the case study. Sensitivity analysis shows that increasing the ratio of medical waste enhances economic benefits but also raises carbon emissions. Additionally, the critical role of carbon tax in selecting low-carbon pathways while balancing economic viability is demonstrated. Compared to traditional waste treatment and energy production methods, the identified optimal processes demonstrate superior performance in carbon reduction, with emissions of 1.35 kg CO2-eq per kg mixed waste under carbon tax conditions. This research highlights the effectiveness of HDMR surrogating in superstructure optimization and offers valuable insights for sustainable WtE conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Back cover Back cover Upcycling hazardous waste into high-performance Ni/η-Al2O3 catalysts for CO2 methanation. Back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1