“Hydrogen bond locks” promoted exciton dissociation and carrier separation in copolymers for enhancing uranyl photoreduction†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-12-05 DOI:10.1039/D4QM00869C
Yiping Liu, Mei Xu, Mengxiong Lin, Maomao Zhao, Guihong Wu, Fangru Song, Yan Liu, Chengrong Zhang, Fengtao Yu and Jianding Qiu
{"title":"“Hydrogen bond locks” promoted exciton dissociation and carrier separation in copolymers for enhancing uranyl photoreduction†","authors":"Yiping Liu, Mei Xu, Mengxiong Lin, Maomao Zhao, Guihong Wu, Fangru Song, Yan Liu, Chengrong Zhang, Fengtao Yu and Jianding Qiu","doi":"10.1039/D4QM00869C","DOIUrl":null,"url":null,"abstract":"<p >Achieving uranyl photoreduction using copolymers with low exciton binding energy (<em>E</em><small><sub>b</sub></small>) from radioactive wastewater holds great promise, but is extremely challenging. Side chain engineering offers more opportunities for developing new copolymers with lower <em>E</em><small><sub>b</sub></small>. However, the introduction of side chains is not completely “painless” and often leads to molecular skeleton distortions, which significantly reduce photocatalytic activity. Herein, a promising strategy is employed to balance the twisted structures by enabling “hydrogen bond locks” on the side chains, thereby promoting exciton dissociation and enhancing uranyl photoreduction. As a proof of concept, two conjugated polymers with identical poly(benzene-benzothiadiazole) backbones but different side chains (methyl and methoxy) on the benzene ring are investigated. These variations in side chains greatly impact the optical gap, electronic structure, and exciton dissociation of the polymers. Through the intramolecular noncovalent O⋯H interactions between the oxygen atoms in methoxy groups and the adjacent hydrogen atoms in benzothiadiazole units, the methoxy functionalized copolymer (CP-OMe) with minimized <em>E</em><small><sub>b</sub></small> exhibits an exceptional uranium extraction capacity of 946.5 mg g<small><sup>−1</sup></small> without adding any sacrificial agent, surpassing those of most currently reported polymers.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 3","pages":" 468-479"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00869c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving uranyl photoreduction using copolymers with low exciton binding energy (Eb) from radioactive wastewater holds great promise, but is extremely challenging. Side chain engineering offers more opportunities for developing new copolymers with lower Eb. However, the introduction of side chains is not completely “painless” and often leads to molecular skeleton distortions, which significantly reduce photocatalytic activity. Herein, a promising strategy is employed to balance the twisted structures by enabling “hydrogen bond locks” on the side chains, thereby promoting exciton dissociation and enhancing uranyl photoreduction. As a proof of concept, two conjugated polymers with identical poly(benzene-benzothiadiazole) backbones but different side chains (methyl and methoxy) on the benzene ring are investigated. These variations in side chains greatly impact the optical gap, electronic structure, and exciton dissociation of the polymers. Through the intramolecular noncovalent O⋯H interactions between the oxygen atoms in methoxy groups and the adjacent hydrogen atoms in benzothiadiazole units, the methoxy functionalized copolymer (CP-OMe) with minimized Eb exhibits an exceptional uranium extraction capacity of 946.5 mg g−1 without adding any sacrificial agent, surpassing those of most currently reported polymers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover Recent advances in tailored chitosan-based hydrogels for bone regeneration and repair Recent advances in nanozyme-based materials for environmental pollutant detection and remediation Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1