Development of xanthan gum-based solid desiccants for the extraction of water vapors from humid air†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2024-11-01 DOI:10.1039/D4ME00134F
Hemant Mittal, Ali Al Alili, Saeed M. Alhassan, Naved I. Malek and Md. Didarul Islam
{"title":"Development of xanthan gum-based solid desiccants for the extraction of water vapors from humid air†","authors":"Hemant Mittal, Ali Al Alili, Saeed M. Alhassan, Naved I. Malek and Md. Didarul Islam","doi":"10.1039/D4ME00134F","DOIUrl":null,"url":null,"abstract":"<p >This research paper reports the synthesis of a super-porous hydrogel of xanthan gum with acrylamide (<em>i.e.</em>, XG-SPH) with highly dense interconnected capillary channels and its application as a desiccant material to capture water vapors from humid air. For the generation of the porous structure with interconnected capillary channels, the polymer desiccant was synthesized <em>via</em> gas blowing, foaming and polymerization. The presence of interconnected capillary channels was observed in the scanning electron microscopy (SEM) images. The synthesized desiccant exhibited 0.27 g g<small><sup>−1</sup></small> adsorption capacity at 50% relative humidity and 25 °C which drastically increased to 1.38 g g<small><sup>−1</sup></small> at 25 °C and 90% relative humidity which suggested that the hydrophilic nature or the desiccant performance of the synthesized polymer desiccant increased with increasing relative humidity. The main driving force behind this high-water vapor adsorption capacity was the capillary condensation process which facilitated the adsorption or accommodation of more incoming water molecules at higher pressures. The adsorption of water molecules by the capillary condensation mechanism was further supported by the applicability of the type-III adsorption isotherm and the experimental data fitted well with the GAB adsorption isotherm. Moreover, the experimental kinetics data correlated well with the driving force model and indicated that water diffusion within the polymer structure followed a type II diffusion mechanism. The desorption kinetics indicated that the desorption occurred rapidly in the initial desorption stages, and most of the captured water was released within the first hour. Moreover, regenerating XG-SPH was energy efficient as it could be successfully regenerated at 50 °C and used for twenty adsorption–desorption cycles. The desiccant was able to retain almost 70% of its original adsorption capacity in the twentieth adsorption cycle. This suggests that gum polysaccharide-based super-porous hydrogels can extract or capture a considerable amount of water from the atmosphere without using any hygroscopic salt.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 2","pages":" 115-128"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00134f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper reports the synthesis of a super-porous hydrogel of xanthan gum with acrylamide (i.e., XG-SPH) with highly dense interconnected capillary channels and its application as a desiccant material to capture water vapors from humid air. For the generation of the porous structure with interconnected capillary channels, the polymer desiccant was synthesized via gas blowing, foaming and polymerization. The presence of interconnected capillary channels was observed in the scanning electron microscopy (SEM) images. The synthesized desiccant exhibited 0.27 g g−1 adsorption capacity at 50% relative humidity and 25 °C which drastically increased to 1.38 g g−1 at 25 °C and 90% relative humidity which suggested that the hydrophilic nature or the desiccant performance of the synthesized polymer desiccant increased with increasing relative humidity. The main driving force behind this high-water vapor adsorption capacity was the capillary condensation process which facilitated the adsorption or accommodation of more incoming water molecules at higher pressures. The adsorption of water molecules by the capillary condensation mechanism was further supported by the applicability of the type-III adsorption isotherm and the experimental data fitted well with the GAB adsorption isotherm. Moreover, the experimental kinetics data correlated well with the driving force model and indicated that water diffusion within the polymer structure followed a type II diffusion mechanism. The desorption kinetics indicated that the desorption occurred rapidly in the initial desorption stages, and most of the captured water was released within the first hour. Moreover, regenerating XG-SPH was energy efficient as it could be successfully regenerated at 50 °C and used for twenty adsorption–desorption cycles. The desiccant was able to retain almost 70% of its original adsorption capacity in the twentieth adsorption cycle. This suggests that gum polysaccharide-based super-porous hydrogels can extract or capture a considerable amount of water from the atmosphere without using any hygroscopic salt.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Back cover Back cover Molecular analysis and design using generative artificial intelligence via multi-agent modeling. Retraction: Heteroatoms chemical tailoring of aluminum nitrite nanotubes as biosensors for 5-hydroxyindole acetic acid (a biomarker for carcinoid tumors): insights from a computational study Nanostructured liquid-crystalline ion conductors based on linear carbonate moieties: effects of oligooxyethylene and alkylene spacers on self-assembled properties and ionic conductivities†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1