Andre L. M. Freitas, Naidel A. M. S. Caturello, Aryane Tofanello, Ulisses F. Kaneko, Lucas E. Correa, Ricardo D. dos Reis, Fabio F. Ferreira, Gustavo M. Dalpian and Jose A. Souza
{"title":"Releasing trapped excitons in 2D perovskites via pressure annealing: a cooperative interplay between lattice strain and the electronic structure†","authors":"Andre L. M. Freitas, Naidel A. M. S. Caturello, Aryane Tofanello, Ulisses F. Kaneko, Lucas E. Correa, Ricardo D. dos Reis, Fabio F. Ferreira, Gustavo M. Dalpian and Jose A. Souza","doi":"10.1039/D4QM00780H","DOIUrl":null,"url":null,"abstract":"<p >Characteristic photon emissions in low-dimensional hybrid perovskites are strongly related to inherent distortions in the crystal lattice. These cooperative distortions, influenced by organic spacers and the confined BX<small><sub>6</sub></small> octahedral arrangement, allow for the manipulation and control of the emitted photon energy and its nature. Herein, we observed a complex dynamic where photon emissions at both low and high energies emerge, depending on octahedral distortion and the application of hydrostatic pressure. Our results demonstrated that samples featuring different octahedral sizes and distortions but having a common organic spacer (BA<small><sub>2</sub></small>MAPb<small><sub>2</sub></small>Br<small><sub>7</sub></small> and BA<small><sub>2</sub></small>MAPb<small><sub>2</sub></small>I<small><sub>7</sub></small>) showed low-energy photon emission attributed to self-trapped excitons (STEs), which can be tuned towards free exciton (FE) states through pressure annealing. Experimental and theoretical results revealed that octahedral distortions in 2D perovskites played a crucial role in controlling emission, disclosing their complex structure and electronic relationship.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 3","pages":" 507-519"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00780h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Characteristic photon emissions in low-dimensional hybrid perovskites are strongly related to inherent distortions in the crystal lattice. These cooperative distortions, influenced by organic spacers and the confined BX6 octahedral arrangement, allow for the manipulation and control of the emitted photon energy and its nature. Herein, we observed a complex dynamic where photon emissions at both low and high energies emerge, depending on octahedral distortion and the application of hydrostatic pressure. Our results demonstrated that samples featuring different octahedral sizes and distortions but having a common organic spacer (BA2MAPb2Br7 and BA2MAPb2I7) showed low-energy photon emission attributed to self-trapped excitons (STEs), which can be tuned towards free exciton (FE) states through pressure annealing. Experimental and theoretical results revealed that octahedral distortions in 2D perovskites played a crucial role in controlling emission, disclosing their complex structure and electronic relationship.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.