Yujiao Zhu, Yuhang Zeng, Huimin Liu, Yuting Yin, Bin Chen and Rong Hu
{"title":"NIR AIE luminogens for primary and metastasis tumor imaging and tracking applications†","authors":"Yujiao Zhu, Yuhang Zeng, Huimin Liu, Yuting Yin, Bin Chen and Rong Hu","doi":"10.1039/D4QM00943F","DOIUrl":null,"url":null,"abstract":"<p >Modern lifestyle changes, including irregular diets and late-night activities, have contributed to a significant rise in cancer rates, particularly among younger demographics, highlighting the pressing need for early detection and treatment. Fluorescence imaging techniques play a crucial role in tumor diagnosis, yet traditional organic fluorescent materials suffer from limitations such as poor photostability and fluorescence quenching in aggregates. This paper introduces the design and synthesis of four aggregation-induced emission (AIE) molecules with near-infrared I emission, which are aimed at overcoming fluorescence quenching in the molecular aggregation state. The photophysical properties of these molecules (<strong>BTA-TT</strong>, <strong>BTA-TTM</strong>, <strong>BTA-FT</strong>, and <strong>BTA-FTM</strong>) were investigated and they exhibited TICT and AIE behaviors in varying water fractions, along with notably large Stokes shifts. <em>In vitro</em> imaging of the four molecules successfully imaged lysosomes within 4T1 cells and they displayed minimal dark toxicity. Moreover, these AIEgens exhibited excellent anti-photobleaching properties, which were superior to those of commercial dyes. In addition, <strong>BTA-FTM</strong> nanoparticles coated with PEG-2000 showed biosafety and enabled tumor imaging in mice for 59 hours, revealing the tumor metastases in the heart and lungs of mice. This research contributes to the development of novel near-infrared molecules for advanced diagnostic applications.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 3","pages":" 520-529"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00943f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern lifestyle changes, including irregular diets and late-night activities, have contributed to a significant rise in cancer rates, particularly among younger demographics, highlighting the pressing need for early detection and treatment. Fluorescence imaging techniques play a crucial role in tumor diagnosis, yet traditional organic fluorescent materials suffer from limitations such as poor photostability and fluorescence quenching in aggregates. This paper introduces the design and synthesis of four aggregation-induced emission (AIE) molecules with near-infrared I emission, which are aimed at overcoming fluorescence quenching in the molecular aggregation state. The photophysical properties of these molecules (BTA-TT, BTA-TTM, BTA-FT, and BTA-FTM) were investigated and they exhibited TICT and AIE behaviors in varying water fractions, along with notably large Stokes shifts. In vitro imaging of the four molecules successfully imaged lysosomes within 4T1 cells and they displayed minimal dark toxicity. Moreover, these AIEgens exhibited excellent anti-photobleaching properties, which were superior to those of commercial dyes. In addition, BTA-FTM nanoparticles coated with PEG-2000 showed biosafety and enabled tumor imaging in mice for 59 hours, revealing the tumor metastases in the heart and lungs of mice. This research contributes to the development of novel near-infrared molecules for advanced diagnostic applications.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.