Nafion membranes for power generation from physiologic ion gradients†

Carolina Pierucci, Lorenzo Paleari, James Baker, Christian C. M. Sproncken, Matilde Folkesson, Justus Paul Wesseler, Andela Vracar, Andrea Dodero, Francesca Nanni, José Augusto Berrocal, Michael Mayer and Alessandro Ianiro
{"title":"Nafion membranes for power generation from physiologic ion gradients†","authors":"Carolina Pierucci, Lorenzo Paleari, James Baker, Christian C. M. Sproncken, Matilde Folkesson, Justus Paul Wesseler, Andela Vracar, Andrea Dodero, Francesca Nanni, José Augusto Berrocal, Michael Mayer and Alessandro Ianiro","doi":"10.1039/D4LP00294F","DOIUrl":null,"url":null,"abstract":"<p >Creatures such as torpedo rays and electric eels showcase the exceptional ability to convert ionic gradients inside their bodies into powerful electrical discharges. In the future, artificial power units capable of reproducing this intriguing biological phenomenon may be able to power active devices, such as pacemakers and prosthetics, directly from ion gradients present in the human body. The present work evaluates the use of proton-selective Nafion membranes to generate electric power from the pH gradient present in the human stomach. First, we characterize two different commercial Nafion membranes by focusing on their ion exchange performance. In particular, we quantify the perm-selectivity of these membranes for various hydrated ions relative to that of the hydronium ion. Our results indicate that the transport of ions in wet Nafion proceeds through water-filled nanochannels, and that proton selectivity can be explained simply by the much larger mobility of protons in water with respect to other ions. Subsequently, we demonstrate a Nafion-based artificial electric organ capable of generating electric power from gastric juices. This power unit is built according to the reverse electrodialysis (RED) scheme, with each cell stack in series capable of generating 134 mV of potential difference and 188 mW m<small><sup>−2</sup></small> of power density.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 1","pages":" 209-221"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00294f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00294f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Creatures such as torpedo rays and electric eels showcase the exceptional ability to convert ionic gradients inside their bodies into powerful electrical discharges. In the future, artificial power units capable of reproducing this intriguing biological phenomenon may be able to power active devices, such as pacemakers and prosthetics, directly from ion gradients present in the human body. The present work evaluates the use of proton-selective Nafion membranes to generate electric power from the pH gradient present in the human stomach. First, we characterize two different commercial Nafion membranes by focusing on their ion exchange performance. In particular, we quantify the perm-selectivity of these membranes for various hydrated ions relative to that of the hydronium ion. Our results indicate that the transport of ions in wet Nafion proceeds through water-filled nanochannels, and that proton selectivity can be explained simply by the much larger mobility of protons in water with respect to other ions. Subsequently, we demonstrate a Nafion-based artificial electric organ capable of generating electric power from gastric juices. This power unit is built according to the reverse electrodialysis (RED) scheme, with each cell stack in series capable of generating 134 mV of potential difference and 188 mW m−2 of power density.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of aromatic to quinoidal transformation on the degradation kinetics of imine-based semiconducting polymers† Adhesive-less bonding of incompatible thermosetting materials† Polymer-based solid electrolyte interphase for stable lithium metal anodes† An injectable, self-healing, polysaccharide-based antioxidative hydrogel for wound healing†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1