Electrosynthesis and characterization of poly(rhodamine B) coatings on 3d printed polylactic acid doped carbon black (PLA-CB) electrodes for promising sensor applications
K. Bahend, M. El Fazdoune, S. Ben Jadi, M. Oubella, A. El-Asri, E. A. Bazzaoui, F. J. Garcia-Garcia, J. I. Martins, M. Bazzaoui
{"title":"Electrosynthesis and characterization of poly(rhodamine B) coatings on 3d printed polylactic acid doped carbon black (PLA-CB) electrodes for promising sensor applications","authors":"K. Bahend, M. El Fazdoune, S. Ben Jadi, M. Oubella, A. El-Asri, E. A. Bazzaoui, F. J. Garcia-Garcia, J. I. Martins, M. Bazzaoui","doi":"10.1007/s10008-024-06095-y","DOIUrl":null,"url":null,"abstract":"<div><p>Conductive filament-based polylactic acid doped carbon black (PLA-CB) was used as an alternative to metal-based electrodes. Rhodamine B (RhB) was electrochemically polymerized on PLA-CB. The electrosynthesis of poly(rhodamine B) (PRhB) was achieved by cyclic voltammetry, galvanostatic, and potentiostatic techniques. PRhB coatings were characterized to investigate their morphology, chemical, and optical properties using different microscopic and spectroscopic techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-visible spectrophotometry (UV-vis). The theoretical UV-vis spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method was comparable with experimental UV-vis spectra. The modified electrode was tested for the detection of melatonin, gallic acid, dopamine, and nitrite showing an enhanced performance. The obtained results are promising for developing adherent PRhB coatings and can be used as a sensor in future studies. 3D printed conductive electrodes can be inexpensively manufactured in electrochemical laboratories using PLA-CB and reach properties well comparable to those obtained at conventional carbon or metallic electrodes, hence used for RhB polymerization.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"651 - 668"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06095-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive filament-based polylactic acid doped carbon black (PLA-CB) was used as an alternative to metal-based electrodes. Rhodamine B (RhB) was electrochemically polymerized on PLA-CB. The electrosynthesis of poly(rhodamine B) (PRhB) was achieved by cyclic voltammetry, galvanostatic, and potentiostatic techniques. PRhB coatings were characterized to investigate their morphology, chemical, and optical properties using different microscopic and spectroscopic techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-visible spectrophotometry (UV-vis). The theoretical UV-vis spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method was comparable with experimental UV-vis spectra. The modified electrode was tested for the detection of melatonin, gallic acid, dopamine, and nitrite showing an enhanced performance. The obtained results are promising for developing adherent PRhB coatings and can be used as a sensor in future studies. 3D printed conductive electrodes can be inexpensively manufactured in electrochemical laboratories using PLA-CB and reach properties well comparable to those obtained at conventional carbon or metallic electrodes, hence used for RhB polymerization.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.