{"title":"Masses and Magnetic Moments of Singly Heavy Pentaquarks using the Gursey-Radicati Mass Formula, Effective Mass, and Screened Charge Scheme","authors":"Ankush Sharma, Alka Upadhyay","doi":"10.1007/s00601-025-01986-w","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by the recent discovery of single heavy tetraquark structures, <span>\\(T_{c\\bar{s}0}^a (2900)^{++}\\)</span> and <span>\\(T_{c\\bar{s}0}^a(2900)^0\\)</span> by the LHCb collaboration, masses and magnetic moments of singly heavy pentaquark states are estimated in this work. To classify the singly heavy pentaquark structures, we employ the special unitary representation. By using the SU(3) flavor representation, singly heavy pentaquark states are classified into the allowed flavor multiplets. Also, by using the extension of the Gursey-Radicati mass formula and the effective mass scheme, masses of singly heavy pentaquark states are estimated. Further, magnetic moments of singly heavy pentaquarks have been calculated using the effective mass and the screened charge schemes. A thorough comparison of our results shows reasonable agreement with the available theoretical data and may be helpful for future experimental studies.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01986-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the recent discovery of single heavy tetraquark structures, \(T_{c\bar{s}0}^a (2900)^{++}\) and \(T_{c\bar{s}0}^a(2900)^0\) by the LHCb collaboration, masses and magnetic moments of singly heavy pentaquark states are estimated in this work. To classify the singly heavy pentaquark structures, we employ the special unitary representation. By using the SU(3) flavor representation, singly heavy pentaquark states are classified into the allowed flavor multiplets. Also, by using the extension of the Gursey-Radicati mass formula and the effective mass scheme, masses of singly heavy pentaquark states are estimated. Further, magnetic moments of singly heavy pentaquarks have been calculated using the effective mass and the screened charge schemes. A thorough comparison of our results shows reasonable agreement with the available theoretical data and may be helpful for future experimental studies.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).